MPS Axign Class-D Technology Deep-Dive

February 2024

Start Time: March 5, 2024 | 1:00 AM PST | 4:00 AM EST | 10:00 AM CET | 5:00 PM CST | 12:00 PM EAT

- Introduction
- Post-Filter Feedback in Class-D Audio
- Low-Latency ADC (LLADC)
- Configurable Digital Feedback Loop
 - ADC configuration
 - Digital Loop Filter configuration
- Pulse-width Modulation
- Summary & Conclusion

Introduction

- Axign is a fabless semiconductor company based in the Netherlands
- Two locations in NL:
 - Enschede (HQ)
 - Nijmegen
- Long relationship between Axign and MPS due to complementary IP
- Axign acquired by MPS at the beginning of 2024
- Presenter:
 - Olaf van der Meer
 - Business Development Mgr.
 - Background in Axign's Applications & Customer Support Team

"Axign is excited to announce that we are now a part of Monolithic Power Systems. Our unique audio technology and expertise, coupled with MPS' manufacturing, product breadth, and system-level expertise will enable us to offer industryleading audio solutions without compromise."

Using MPS Axign Technology

- What is class-D audio?
 - Switching audio amplifier
 - Modulator creates PWM/PDM
- What is post-filter feedback (PFF) in Class-D audio?
 - PFF implies taking the feedback point after the output filter
- Feedback suppresses noise and distortion in the forward path
 - Errors in the modulator
 - Errors in the power stage
 - PFF corrects errors in the output filter as well
- THD+N in the feedback path cannot be corrected
 - High-quality feedback is key

- In the analog domain, parameter spread will present a limitation
 - High-order designs will have smaller margins of stability
- Digital feedback loops are **consistent** and **programmable**
 - Digital coefficients are loaded on start-up
- Programmable feedback loops can be fine-tuned to:
 - Performance requirements
 - Lowest power dissipation
- Ultimately, quality of a feedback system is limited by the quality of the feedback path
 - High-resolution analog-to-digital converter (ADC) is required
 - Patented ADC technology is cornerstone of Axign technology solutions

 2-CH and 4-CH controllers for post-filter feedback available now

AX5688

Digital Audio Converter and Amplifier Controller (2-ch BTL / 1-ch PBTL)

- Power-stages and DC-DC available from MPS
- AX5688 and AX5689 are power-stage agnostic
- More MPS Axign products are in development

- AX5689 Block diagram shows more detail
- AX5689 contains
 - PWM x8
 - Low-latency ADC x8
 - Loop Filter x8
- DM and CM separated
- Possibility for PWM feedback
- Low-latency ADC has two inputs

Low-Latency ADC (LLADC)

Low-Latency ADC (LLADC)

- AX5688 contains 4x LLADC
- AX5689 contains 8x LLADC
- LLADCs in parallel gives higher performance

AX5688

Digital Audio Converter and Amplifier Controller (2-ch BTL / 1-ch PBTL)

AX5689

Digital Audio Converter and Amplifier Controller (4-ch BTL / 2-ch PBTL)

- Differential input ADC
 - Optimized for bridge-tied load (BTL) operation
 - Larger signal swing with two signals in anti-phase
 - Differential design eliminates even-order distortion
- DM and CM Split
 - · Common-mode determined by average of input currents
 - Differential-mode determined by difference of input currents
 - DM and CM have different performance requirements \rightarrow DM is what we hear

- Current input ADC
 - ADC resistors convert output voltage into ADC current
 - Scalable for all levels of PVDD
- Usable with multiple different power stages
 - E.g. woofer/tweeter split
 - Woofer at high PVDD
 - Tweeter at low PVDD
- Digital control system acts on digital ADC output
 - Easily scale design to higher output power
 - ADC resistor proportional to maximum output voltage
 - Noise performance correlates with ADC resistors
 - Power/Noise trade-off \rightarrow dynamic range (DR) is constant

Configurable Digital Feedback Loop

Using the AX5688 and AX5689

Configurable Digital Loop – ADC configuration

- Flexible ADC configuration to leverage all the hardware for a chosen topology
- Configurable ADC options example:
 - 4x2 ADCs or 2x4 ADCs
 - 6 ADCs to tweeter & 2 ADCs to woofer
 - 3 dB boost to dynamic range for every doubling of parallel ADCs

Configurable Digital Loop – Loop filters

- 8 configurable Digital Loop Filter slices
- Loop filter slices can be used to form several digital DM and CM feedback loops
- Common-mode feedback loops damp the output filter resonance
 - · Common-mode LC response is not damped by the differential load
 - Eliminate RC snubbers/Zobel networks
- Differential-mode feedback loops suppress audible distortion and noise

Pulse Width Modulation

Using the AX5688 and AX5689

Pulse Width Modulation

- Class-D is traditionally popular due to its high efficiency
- Typical audio content contains very low average power
- Losses at normal listening levels are largely determined by:
 - Switching losses
 - Ripple losses

- Switching losses largely occur due to the (parasitic) capacitance charging and depleting
- Ripple currents run through the power stage and output filter inductors
 - Maximum ripple at low outputs in traditional Class-D amplifiers
- This means wasting the most energy while at realistic listening levels!

Pulse Width Modulation - ZCM

- Fix both switching losses and ripple losses with one solution:
 - Zero common-mode (ZCM) switching
- Only one side switches, reducing switching losses drastically
- Eliminates ripple currents for very small signals

Pulse Width Modulation - ZCM

- Traditionally causes significant (crossover) distortion
- Distortion in the audio band is eliminated by high loop gain
 - > 60 dB loop gain makes crossover distortion negligible
- THD+N well below 0.005% is possible
 - Frequency independent
 - Load independent

200

2k

Frequency (Hz)

20k

0,0001

20

Combining extremely low losses with high audio quality, no compromise

PWM Configuration

- 8 configurable PWM outputs
- Flexible PWM configurations
 - 4x Bridge-tied load (BTL)
 - 2x Parallel BTL (PBTL)
 - 2x BTL + 1x PBTL
- PBTL is typically chosen for higher output power

- When using 4 PWM outputs, we can use 2-phase or even 4-phase modulation
 - Advanced option for highest performance
 - Only possible for PBTL

PWM Configuration

- For 4-phase modulation, generate 2 more digital PWM carriers that are 90° out of phase
- 4-phase results in higher performance
- Downside \rightarrow Inductor per half-bridge
- 2-phase PBTL modulation sums currents before the inductor
 - Still have double available current
- 4-phase only possible with 4 PWMs
 - AX5689 contains 8 PWMs \rightarrow 2x 4-phase or 4x 2-phase
 - AX5688 contains 4 PWMs \rightarrow 1x 4-phase or 2x 2-phase

Summary & Conclusion

Summary & Conclusion (1/3)

- Fully digital feedback loops have distinct advantages over analog feedback loops
 - Consistent (No component spread)
 - Configurable & Programmable
- Both DM and CM output are controlled using digitized feedback
 - DM feedback loop used to suppress audible noise and distortion
 - CM feedback loop used to control LC resonance \rightarrow No snubbers/Zobel network needed

- Zero common-mode (ZCM) modulation allows for extremely low losses
 - High-order feedback loop guarantees exceptionally high audio performance
 - Highest performance possible using 4-phase modulation, at higher system cost

Summary & Conclusion (2/3)

- Highly configurable digital architecture
- Configurable LLADC configuration
 - Parallel ADCs for higher performance
 - Easy to meet performance requirements
- Configurable Loop filter Slices
 - DM and CM control loops
 - AX5689 (4CH) \rightarrow 4DM feedback loops and 4CM feedback loops
- Configurable PWM modulators and outputs
 - Zero common-mode PWM for extremely high efficiency
 - 2-phase or 4-phase modulation possible

Summary & Conclusion (3/3)

- High configurability creates high potential for optimization
- How to easily leverage configurability for your application?
- MPS Axign reference designs
 - Copy-ready designs
 - Optimized for thermal performance, audio quality and cost
 - MPS reference designs available soon

Stay tuned:

www.monolithicpower.com/en/products/class-d-audio www.monolithicpower.com/en/contact/newsletter-subscription

