Start Time: January 17, 2024 | 5:00 PM CET | 8:00 AM PST | 11:00 AM EST

Constant-On-Time (COT) Control for FPGA High-Current Power Supplies

Tomas Hudson, Monolithic Power Systems, Inc.

January 17, 2024

Agenda

- 1. Peak Current Mode Control Basics
- 2. Peak Current Mode Control Basics: Subharmonic Oscillation
- 3. Constant-On-Time (COT) Control
- 4. COT Advantages and Challenges
- 5. MPS's Adaptive COT Control
- 6. MPS's COT Power Modules for FPGA
- 7. Using Power Modules to Simplify Hardware Design

Peak Current Mode Control Basics

The error amplifier output (COMP) defines the peak current (I_{PK}) for the next cycle:

- If the compensation voltage (V_{COMP}) increases, then I_{PK} and the duty cycle increases
- If the input voltage (V_{IN}) drops, then the duty cycle increases until the required I_{PK} is reached, and the output voltage (V_{OUT}) is maintained

Peak Current Mode Control Is Not Sufficient for Certain Applications

For applications where fast transient responses are required, current mode control is not fast enough.

- Goal: Faster transient response
- Thought Process: Transient response can be improved by not waiting for the clock.
- Solution: Use constant-on-time (COT) control to fix the on time while allowing the frequency to change.

Constant-On-Time (COT) Control

For applications where fast transient responses are required, current mode control is not fast enough.

- Goal: Faster transient response
- Thought Process: Transient response can be improved by not waiting for the clock.
- Solution: Use constant-on-time (COT) control to fix the on time while allowing the frequency to change.

Constant-On-Time (COT) Control

COT control does not use a clock:

- When V_{OUT} falls bellow the reference voltage (V_{REF}), the high-side MOSFET turns on
- The on time is constant and determined by the one-shot timer, while the off time is variable

Constant-On- Time (COT) Control

Advantages	Disadvantages
 Excellent load transient performance: About 4x faster compared to fixed- 	 Must generate a slope on FB (e.g. using COUT_ESR)
 frequency current mode Simple architecture does not require compensation Seamless transition between light loads and heavy loads 	 The switching frequency (f_{SW}) is not constant due to variations in the off time Output filter design is difficult and undesired in many sensitive systems

COT Advantages: Fast Transient Response

COT Advantages: Fast Transient Response

Peak Current Mode

Constant-On-Time

• 3x faster transient response compared to peak current mode with the same components and set-up: $_{\circ}$ 12V input, 3.3V output, 0A to 3.5A load step $_{\circ}$ 1µH L_{OUT}, 2x22µF C_{OUT}

Example: Virtex-7

VCCINT Stability Requirement: 3% (30mV)

MPM3695-25

- + 3V to 16V $\rm V_{IN}$ Range
- Continuous Output Current (I_{OUT}) Up to 20A
- Supports PMBus/I²C for Monitoring and Control
- COT Control for Fast Transients
- 1% Reference Voltage (V_{REF}) across a 0°C to 70°C Temperature Range
- + V_{OUT} Remote Sense
- Support Parallel Operation Up to 50A
- Available in a QFN-19 (10mmx12mmx4mm) Package

COT Advantages: Simple Architecture

Since COT control does not require a compensator, no time is spent tuning the compensator parameters.

COT Advantages: Transition from Light Loads to Heavy Loads

Due to variable frequency, COT control provides intrinsic pulse-skipping capabilities, enabling a linear transition between light-load operation and continuous conduction mode (CCM).

100 90

Low-Voltage Series: MPM3804, MPM3814C, MPM3824C, MPM3834C

MPM3804

- + 2.3V to 5.5V $\rm V_{IN}$ Range
- Adjustable Output from 0.6V
- 100% Duty Cycle in Dropout
- 2.4MHz Switching Frequency (f_{SW})
- Low Profile: 0.9mm
- QFN-10 (2mmx2mmx0.9mm) Package
- Best-in-Class Efficiency
- EN and PG for Sequencing
- COT Control

MPM3814C/24C/34C

- 1A/2A/3A Pin Compatible
- + 2.75V to 6V V_{IN} Range
- Adjustable Output from 0.6V
- FCCM and DCM Available
- Low Profile: 1.2mm
- ECLGA-14 (2.5mmx2.5mmx1.2mm) Package
- Best-in-Class Efficiency
- COT Control
- 100% Duty Cycle in Dropout

Total Solution Size: 3.7mmx3.7mm

1.2V, 1.8V, 2.5V, 3.3V Fixed-Output Version Available

COT Challenges: Variable Frequency in Steady State

PWM Circuit

Since there is no clock, the COT converter's f_{SW} heavily depends on $V_{IN},$ $V_{OUT},$ and $I_{LOAD}.$

A stable f_{SW} at steady state (stable I_{LOAD}) may be difficult due to variations in V_{IN} , which is problematic for certain applications.

MPS Solution: Adaptive COT Control

PWM Circuit

Adaptive COT control uses the conversion ratio (V_{OUT}/V_{IN}) to adjust the one-shot timer that sets the on time (t_{ON}) .

This enables a steady f_{SW} during steady state, without affecting the converter's ability to immediately change the frequency when faced with a load step.

COT Challenge: Stability Is Dependent on ESR

COT control compares the feedback voltage to a set reference voltage.

The feedback voltage ripple has two main components:

- 1. ESR ripple: Directly proportional to the inductor current (IL), with no delay/phase difference
- 2. V_{CAP} ripple: Caused by charging/discharging the output capacitor, and is delayed with respect to I_L

COT Challenge: Stability Is Dependent on ESR

If the ESR ripple dominates, the V_{OUT} ripple is in phase with I_L , and the circuit operates correctly.

Dutv Duty **ESR ripple ESR** ripple Capacitor ripple **Capacitor ripple Total ripple** Total ripple Vc

If the V_{CAP} ripple dominates, the V_{OUT} ripple is

out of phase with I_{I} , and the circuit can enter

subharmonic oscillation.

COT requires output capacitors (C_{OUT}) with large ESR for stability. If low-ESR capacitors are used (e.g. MLCC), the circuit may become unstable.

MPS Solution: Current Ripple Injection

Option 1: Use C_{OUT} with sufficient ESR

MPS Solution: Current Ripple Injection

Option 2: Add an external ramp

MPS Solution: Current Ripple Injection

Option 3: Use the RC circuit to generate a slope voltage and ensure that the FB ripple is in phase with I_L

MPS

MPM3695-100: 100A Power Module

Key Advantages:

- 3V to 16V V_{IN} Range
- + 0.5V to 3.3V $\rm V_{OUT}$ Range
- 100A of Continuous Current (60A for 3.3V V_{OUT})
- Parallel Up to 800A

Small Size and Easy to Use

- Very simple 100A+ solutions
- Minimum external components
- Only three layers required for layout
- Saves board space: Allows for highspeed traces underneath

Fast Transients and Min Cout

- Four phases interleaved inside
- Multi-phase COT (MCOT) for fast transients
- Saves up to 50% of C_{OUT} compared with competitor modules

2x Modules, 100A Step, Peak to Peak $\pm 3\%,\,2500\mu F\,C_{OUT}$

Available in a BGA (15mmx30mmx5.18mm) Package

Diagnostics and Reliability

- BGA packages enhance mechanical and thermal stress as well as reliability
- I²C reports any system faults
- Individual module/phase faults can be detected

Save Up to 50% on External Components

Auto-Interleaving COT

- MPS scalable power modules allow for up to 8-phase operation
- Active current balancing ensures equal current across all outputs
- Automatic master/slave detection and phase counting via the TAKE pin

COT Challenge: DC Offset Error

- Add an integrator to compensate the $\frac{1}{2}$ (V_{OUT} ripple) influence
- The voltage loop is a slow-speed loop, which is used for DC regulation only
- Does not impact transient speed

MPS's Adaptive COT Control

and heavy loads

Advantages	Disadvantages
 Excellent load transient performance: About 4x faster compared to fixed- 	 Must generate a slope on FB (e.g. using COUT_ESR)
frequency current modeSimple architecture does not require	 f_{SW} is not constant due to variations in the off time
compensationSeamless transition between light loads	 Output filter design is difficult and suboptimal in many sensitive systems

MPS

operation

Quasi-stable frequency during state-state

Does not require an internal oscillator

Integrated slope generator to keep the

converter stable, even with low ESR

• Auto-interleaving for simple power scaling

MPS's COT Power Modules for FPGA

VIN

MPM82504 3V to 16V, Quad 25A, Flexible Output Parallel, MCOT Control, BGA (15mmx30mmx5.18mm)

MPS Power Module: Key Advantages

- Simplified Board Layout
- Minimum Components

Improved EMI Performance

Module Layout Optimized for EMI:

- Smaller Switch Node
- Smaller Hot Loops
- Fast Time to Market
- Full Qualification as a Complete Power Supply

