How Automotive Mission Profiles Relate to Semiconductor Reliability Testing

Presenter: Thomas Eikenberg

September 30th, 2020

Agenda

What Is a Mission Profile?

Stress to the Silicon

IC Qualification

Assessment of Existing and Qualified Components

Fail Mech, Models, Acceleration Factor

Equivalent Qualification Stress

Equivalent Qualification Stress – Example

Open Q&A

What is a Mission Profile?

A Mission Profile is a mirror image of the expected life time of an application and the associated stress, which all used device will be submitted to.

It is needed to estimate if all used device will be reliable enough to maintain the specified product performance at least over the projected life time.

Most common is the Mission Profile that details the life time and associated use temperatures in form of a table. Other MPs specify also mechanical stress or stress that comes along with humidity.

Operating Lifetime 15 years								
Profile 1								
Act	ive	Passive						
Tj in °C	hours	Tj in °C	hours					
-40	45	-40	346					
20	45	15	21168					
40	855	25	42336					
50	3150	35	21168					
60	4950	40	1382					
70	9000		86400					
80	11250							
90	6750							
100	4950							
110	2700							
120	1170							
125	135							
	45000							
Total hours	131400							

Stress to the Silicon

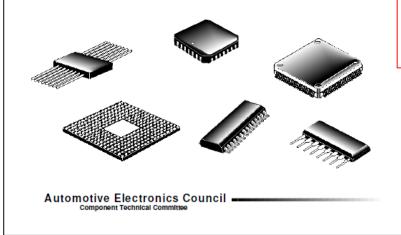
What stress is it that the used devices will see during their life time?

Thermo-Mechanical: the applications will be switched on/off and are used in winter and

summer time etc.

Voltage- and Temperature: Voltage (current) as well as temperature will cause aging effects to the

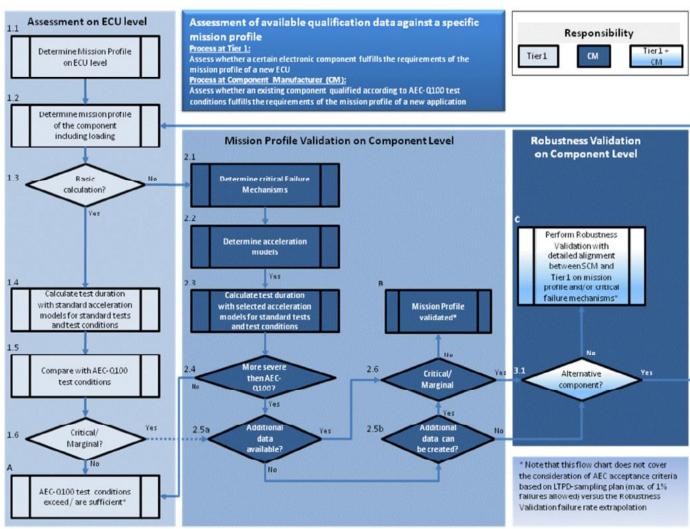
silicon-junction


The stresses will impact the material properties over life time and will (slowly) degrade the device performance. This can compromise the electrical performance as well as the mechanical performance.

There are numerous standards that define certain qualification tests, which are designed to provoke certain reliability fail mechanisms. In semiconductors the most used standards are JEDEC and AEC.

IC Qualification

AEC - Q100 - Rev-<u>H</u> September 11, 2014


FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR INTEGRATED CIRCUITS

Appendix Template 4A: AEC-Q100 Qualification Test Plan

Ар	•	_	e 4A: AEC-Q10 I QUALIFICATION	O Qualification Te	st P	an			
LICED COMPANY		QTOOH	QUALIFICATION		DATE:				
USER COMPANY: DATE:									
USER SPEC #:	USER P/N: TRACKING NUMBER: USER SPEC #: USER COMPONENT ENGINEER:								
SUPPLIER COMPANY:				ER MANUFACTURING S					
SUPPLIER P/N:			SUPPLI	PPAP SUBMISSION D					
SUPPLIER FAMILY TYPE:			Di Di	EASON FOR QUALIFICATION L					
				Test Conditions/S.S. per		REQUIE	REMENTS	RESULTS	
STRESS TEST	ABV	TEST#	TEST METHOD	Lots (identify temp, RH, & Peak Reflow Temp. =	& bias)	S.S #LOTS		Fails/S.S./# lots	
Preconditioning	PC	A1	JEDEC J-STD-020	Preconditioning used =		Min. MSL = 3		MSL =	
Temperature Humidity Bias or HAST	THB/HAST	A2	JESD22-A101/A110			77	3		
Autoclave or Unbiased HAST	AC / UHST	A3	JESD22-A102/A118			77	3		
Temperature Cycle	TC	A4	JESD22-A104			77	3		
Power Temperature Cycling	PTC	A5	JESD22-A105			45	1		
righ Temperature Storage Life	HTSL	A6	JESD22-A103			45	1		
High Temperature Operating Life	HTOL	B1	JESD22-A108			77	3		
Early Life Failure Rate	ELFH	82	AEC 0100-008		=	800	3		
WM Endurance, Data Retention, & Operational Life	EDR	B3	AEC Q100-005			77	3_		
Vire Bond Shear	WBS	C1	AEC Q100-001			5	1		_
Wire Bond Pull Strength	WBP	C2	MIL-STD-883 - 2011			5	_1_		$\overline{}$
remperature Cyck	D.			TG.	- 6	14	HER	J22-A104	
Power Temperature Cycling				PTC	_	5	JES DOO A 105		
High Temperature Storage Life			HTSL	7	A6 JESS		022-A103		
			HTOL	7	B1 JEST		022-A108		
Early Life Failure Rate			ELFR	=	0	AEC 0100-008			
		inel	inn 0	ELFR	-	26	PLEC	4100.000	_
NVM Endurance, Data Retention, & Operational Life			iori, a	EDR B		33	AEC Q100-008		
Wire Bond Shear			- 3	WBS	-	21	AEC	Q100-001	
Electrical Distributions	ED	E5	AEC Q100-009			30	3		
ault Grading	FG	E6	AEC-Q100-007						
Characterization	CHAR	E7	AEC Q003						
Electromagnetic Compatibility	EMC	E9	SAE J1752/3			1	1		
Short Circuit Characterization	SC	E10	AEC Q100-012			10	3		
Soft Error Rate	SER	E11	JESD89-1, -2, -3			3	1		
ead Free	LF	E12	Q005				•		
Process Average Test	PAT	F1	AEC Q001						
Statistical Bin/Yield Analysis	SBA	F2	AEC Q002						
Hermetic Package Tests	MECH	G1-4	Series			15	1		
Package Drop	DROP	G5				5	1		
Jd Torque	LT	G6	MIL-STD-883 - 2024			5	1		
Die Shear Strength	DS	G7	MIL-STD-883 - 2019			5	1		
nternal Water Vapor	IWV	G8	MIL-STD-883 - 1018			5	1		
Supplier:			Approv (User Eng		-	•			

Assessment of Existing and Qualified Components

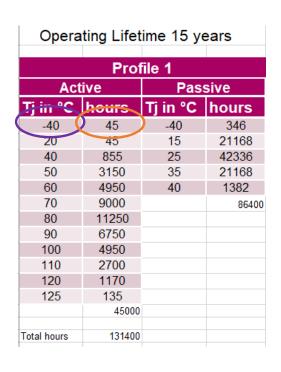
AECQ100 defines that the Tier1 shall perform the assessment of the reliability capability on ECU level.

AECQ100, Rev H; Figure A7.2: Flow Chart 2

Fail Mech, Models, Acceleration Factor

Loading	Mission Profile Input	Stress Test	Stress Conditions	Acceleration Model (all temperatures in K, not in °C)	Model Parameters	Calculated Test <u>Duration</u>	Q100 Test Duration
<u>Operation</u>	t _u = 12,000 hr (average operating use time over 15 yr) T _u = 87 ℃ (average junction temperature in use environment)	High Temperature Operating Life (HTOL)	T _t = 125 ℃ <u>(junction</u> <u>temperature in</u> <u>test</u> <u>environment)</u>	$ A_f = \exp \left[\frac{E_a}{k_B} \bullet \left(\frac{1}{T_u} - \frac{1}{T_t} \right) \right] $ Also applicable for High Temperature Storage Life (HTSL) and NVM Endurance, Data Retention Bake, & Operational Life (EDR)	E _a = 0.7 eV (activation energy; 0.7 eV is a typical value, actual values depend on failure mechanism and range from -0.2 to 1.4 eV) k _B = 8.61733 x 10 ⁻⁵ eV/K (Boltzmann's Constant)	$t_{t} = 1393 \text{ hr}$ (test time) $t_{t} = \frac{t_{u}}{A_{f}}$	<u>1000 hr</u>
Thermo- mechanical	n _u = 54,750 cls (number of engine on/off cycles over 15 yr of use) ΔT _u =76 °C (average thermal cycle temperature change in use environment)	Temperature Cycling (TC)	ΔT _t = 205 °C (thermal cycle temperature change in test environment: -55 °C to +150 °C)	$ \frac{\text{Coffin Manson}}{A_f = \left(\frac{\Delta T_t}{\Delta T_u}\right)^m} $ Also applicable for Power Temperature Cycle (PTC)	m = 4 (Coffin Manson exponent; 4 is to be used for cracks in hard metal alloys, actual values depend on failure mechanisms and range from 1 for ductile to 9 for brittle materials)	$\frac{n_{t} = 1034 \text{ cls}}{\text{(number of cycles} \\ \text{in test)}}$ $\mathcal{N}_{t} = \frac{n_{u}}{A_{f}}$	1000 cls

AECQ100, Rev G; Table A7.1: Basic Calculations for AEC-Q100 Stress Test Conditions and Durations


Equivalent Qualification Stress

In order to check if a certain device is suitable for a given MP, the stress of the MP must be translated into equivalent qualification stress.

Mission Profile Stress -> Equivalent Qual Stress > or < Qualification Stress

The associated acceleration models "Arrhenius" and/or "Coffin-Manson" provide the equations that needs be used.

Equivalent Qualification Stress - Example

$$Af = \exp\left(\frac{Ea}{kb}\right) * \left(\frac{1}{273 - 40} - \frac{1}{273 + 125}\right)$$

$$Af = 4184927.76$$

$$tt = \frac{tu}{Af}$$

$$tt = \frac{45h}{4184927.76}$$

$$tt = 0.0000107h$$

<u>Arrhenius</u>

$$A_f = \exp\left[\frac{E_a}{k_B} \bullet \left(\frac{1}{T_u} - \frac{1}{T_t}\right)\right]$$

This calculation needs to be done for every profile increment and the total equivalent test time is the sum of all tts.

For this Profile 1 the total equivalent test time is ~5888h.

The typical AECQ100 HTOL testing is only 1000h.

- -> the MP stress exceeds the qual stress by factor ~6.
- -> there is a certain risk that there will be device failures towards the end of the projected application life time.

Equivalent Qualification Stress – Example cont'd

How to address this?

- Either the actual Tj can be reduced in the application by implementing cooling/heat sink
- Extend the qualification by prolonging the test time and/or the increase the Tj

Using a qualification Tj of 150C the total equivalent test time would be ~1767h.

With a test time of 1000h there would still be a little risk for device failures towards the end of the projected application life time.

If we additionally increased the test duration, say to 2000h, the qual stress would be significantly higher than the expected life time stress. This would provide a very high level of confidence that the device would not compromise operating performance or cause failures towards the end of the projected application life time.

Thanks!