Fundamentals of AEC-Q100: What "Automotive Qualified" Really Means

Richard Oshiro, Director, QMS-Automotive

November 2018

MPS Automotive Background

Richard Oshiro – Director, QMS, Automotive

- Nearly 20 years experience in Automotive Quality
- Currently responsible for MPS Automotive Quality as well as our Quality Management System. Representative for MPS on Automotive Electronics Council
- 11+ years as Director of Quality at Cypress Semiconductor with first task getting 2 internal fabs and 1 assembly test facility ISO/TS 16949 certified
- 5 ½ years as Director of Quality at a U.S. based assembly subcon where we assembled a Ford microelectronics component

The Who/What/Why's of AEC

The Many AEC-Qxxx Standards

AEC-Q100: Temperature Grades

AEC-Q100: Key Reliability Tests

Spotlight on HTOL, ELFR, PTC, TC, HAST

Beyond AEC: STRM, Road Test, EVB BI

MPS Consumer / Industrial / Automotive Grades Compared

Background: Automotive Ecosystem

Automotive Electronics Council

Component Technical Committee

Automotive vs. Consumer

	Consumer	Automotive
Ambient Temperature Range	0° to 85°C	-40°C to 150°C
Expected Operating Life	2-3 years	10 years+
Acceptable Failure Rates	300 parts per million	Zero
Supply Lifetime	2-3 years	15-20 years

Why AEC-Q100 Qualification is Needed

Automotive companies sell millions of very expensive vehicles – to some people this means they think they can sue them for a lot of money

Automotive buyers have increased their quality requirements, partly due to automotive company's own advertisements

Example

1000 defective cars

1 Million cars sold

Single 1 ppm per part defect rate

1000 parts per ECU (IC, res, cap, etc)

Reliability "Bathtub Curve"

The Many AEC-Q Standards

Additional Standards

- AEC Q100-007 Rev-B: Fault Simulation and Test Grading
- AEC Q100-008 Rev-A: Early Life Failure Rate (ELFR)
- AEC Q100-009 Rev-B: Electrical Distribution Assessment
- AEC Q100-010 Rev-A: Solder Ball Shear Test
- AEC Q100-011 Rev-C1: Charged Device Model (CDM) Electrostatic Discharge Test
- AEC Q100-001 Rev-C: Wire Bond Shear Test
- AEC Q100-002 Rev-E: Human Body Model (HBM) Electrostatic Discharge Test
- AEC Q100-004 Rev-D: IC Latch-Up Test
- AEC Q100-005 Rev-D1: Non-Volatile Memory Program/Erase Endurance, Data Retention, and Operational Life Test
- AEC Q100-012 Rev-: Short Circuit Reliability Characterization of Smart Power Devices for 12V Systems

- AEC Q101 Rev D1: Failure Mechanism Based Stress Test Qualification For Discrete Semiconductors (base document)
- AEC Q101-001 Rev-A: Human Body Model (HBM) Electrostatic Discharge Test
- AEC Q101-003 Rev-A: Wire Bond Shear Test
- AEC Q101-004 Rev-: Miscellaneous Test Methods
- AEC Q101-005 Rev-: Charged Device Model (CDM) Electrostatic Discharge Test
- AEC Q101-006 Rev-: Short Circuit Reliability Characterization of Smart Power Devices for 12V Systems
- AEC Q200 Rev D base: Stress Test Qualification For Passive Components (base document)
- AEC Q200-001 Rev-B: Flame Retardance Test
- AEC Q200-002 Rev-B: Human Body Model (HBM) Electrostatic Discharge Test
- AEC Q200-003 Rev-B: Beam Load (Break Strength) Test
- AEC Q200-004 Rev-A: Measurement Procedures for Resettable Fuses

AEC-Q100 Key Figures & Grades

AEC-Q100 Key Test Categories

Accelerated Environment Stress

Accelerate Lifetime Simulation

Packaging/Assembly

Die Fabrication

Electrical Verification

Defect Screening

Cavity Package Integrity

AEC-Q100: Key Reliability Tests

Accelerated Environment Stress Tests

- Preconditioning
- •Temperature-Humidity-Bias (THB) / Biased Highly Accelerated Stress Test (HAST)
- •Autoclave (AC) / Unbiased (HAST)
- •Temperature Cycling (TC)
- Powered Temperature Cycling (PTC)
- •High Temperature Storage Life (HTSL)

Accelerate Lifetime Simulation Tests

High Temperature Operating Life (HTOL)
Early Life Failure Rate (ELFR)
NVM Endurance, Data Retention, and Operational Life (EDR)

Packaging/Assembly

- •Wire Bond Shear (WBS)
- •Wire Bond Pull (WPL)
- •Solderability (SD)
- •Physical Dimensions (PD)
- •Solder Ball Shear (SBS)
- •Lead Integrity (LI)

Die Fabrication

- •Electromigration (EM)
- •Time Dependent Dielectric Breakdown (TDDB)
- •Hot Carrier Injection (HCI)
- •Negative Bias Temperature Instability (NBTI)
- Stress Migration (SM)

Electrical Verification

- •Pre- and Post- Stress Function Parameter
- •ESD HBM/CDM
- Latch-Up
- Electrical Distributions
- Fault Grading
- Characterization
- •Electromagnetic Compatibility (EMC)
- Short Circuit (SC)
- Soft Error Rate (SER)
- •Lead (Pb) Free

Defect Screening

Part Average TestingStatistical Bin/Yield Analysis

Package Integrity

Table 2: Qualification Test Methods (continued)

		TEST	GROUF	B – ACC	ELERATE	D LIFETI	ME SIMULAT	TION TESTS
STRESS	ABV	#	NOTES	SAMPLE SIZE / LOT	NUMBER OF LOTS	ACCEPT CRITERIA	TEST METHOD	ADDITIONAL REQUIREMENTS
High Temperature Operating Life	HTOL	B1	Н, Р, <mark>В</mark> , D, G, K	77	3	0 <u>Fails</u>	JEDEC JESD22-A108	 For devices containing NVM, endurance preconditioning must be performed before HTOL per Q100-005. Grade 0: +150°C T_a for 1000 hours. Grade 1: +125°C T_a for 1000 hours. Grade 2: +105°C T_a for 1000 hours. Grade 3: +85°C T_a for 1000 hours. HTOL NOTES: HTOL stress times for the appropriate grade Ta are the min requirement; the Tj of the test (measured or calculated) should be available. Tj may be used instead of Ta when performing HTOL provided that Tj of the device under HTOL conditions is equal to or higher than the Tj maximum operating (Tjopmax) of the particular device, but below the absolute maximum Tj. If Tj is used to set the HTOL conditions, the minimum stress of 1000 hours at the Ta of the device is to be shown using activation energy of 0.7ev or other value technically justified. V_{oc} (max) at which dc and ac parametrics are guaranteed. Thermal shut-down shall not occur during this test. TEST before and after HTOL at room, cold, and hot temperature (in that order).
Early Life Failure Rate	ELFR	B2	H, P, B, N, G	800	3	0 <u>Fails</u>	AEC Q100-008	Devices that pass this stress can be used to populate other stress tests. Generic data is applicable. TEST before and after ELFR at room and hot temperature.

• EVB based

Table 2: Qualification Test Methods (continued)

2	TEST GROUP A – ACCELERATED ENVIRONMENT STRESS TESTS (CONTINUED)										
STRESS	ABV	#	NOTES	SAMPLE SIZE / LOT	NUMBER OF LOTS	ACCEPT CRITERIA	TEST METHOD	ADDITIONAL REQUIREMENTS			
Power Temperature Cycling	PTC	A5	H, P, B, D, G	<mark>45</mark>	1	0 <u>Fails</u>	JEDEC JESD22-A105	PC before PTC for surface mount devices. Test required only on devices with maximum rated power \geq 1 watt or $\Delta T_J \geq$ 40°C or devices designed to drive inductive loads. Grade 0: T_a of -40°C to +150°C for 1000 cycles. Grade 1: T_a of -40°C to +125°C for 1000 cycles. Grades 2 and 3: T_a -40°C to +105°C for 1000 cycles. Thermal shut-down shall not occur during this test. TEST before and after PTC at room and hot temperature.			

• EVB

Table 2: Qualification Test Methods (continued)

	TEST GROUP A – ACCELERATED ENVIRONMENT STRESS TESTS (CONTINUED)										
STRESS	STRESS ABV # NOTES SAMPLE SIZE / LOT NUMBER OF LOTS ACCEPT CRITERIA TEST METHOD		ADDITIONAL REQUIREMENTS								
Temperature Cycling	тс	A4	H, P, <mark>B</mark> , D, G	77	3	<mark>0</mark> Fails	JEDEC JESD22-A104 and Appendix 3	 PC before TC for surface mount devices. Grade 0: -55°C to +150°C for 2000 cycles or equivalent. Grade 1: -55°C to +150°C for 1000 cycles or equivalent. Note: -65°C to 150°C for 500 cycles is also an allowed test condition due to legacy use with no known lifetime issues. Grade 2: -55°C to +125°C for 1000 cycles or equivalent. Grade 3: -55°C to +125°C for 500 cycles or equivalent. TEST before and after TC at hot temperature. After completion of TC, decap five devices from one lot and perform WBP (test #C2) on corner bonds (2 bonds per corner) and one mid-bond per side on each device. Preferred decap procedure to minimize damage and chance of false data is shown in Appendix 3. 			

• Pre-conditioning first

Table 2: Qualification Test Methods

	TEST GROUP A – ACCELERATED ENVIRONMENT STRESS TESTS									
STRESS	ESS ABV # NOTES SAMPLE SIZE / LOT NUMBER OF LOTS ACCEPT TEST METHOD		# NOTES SAMPLE NUMBER OF LOTS ACCEPT CRITERIA TEST METHOD ADDITIONAL F							
Autoclave or Unbiased HAST or Temperature- Humidity (without Bias)	AC or UHST or TH	A3	P, B, D, G	77	3	0 Fails	JEDEC JESD22-A102, A118, or A101	For surface mount devices, PC before AC (121°C/15psig for 96 hours) or unbiased HAST (130°C/85%RH for 96 hours, or 110°C/85%RH for 264 hours). For packages sensitive to high temperatures and pressure (e.g., BGA), PC followed by TH (85°C/85%RH) for 1000 hours may be substituted. TEST before and after AC, UHST. or TH at room temperature.		

• AC

Process/Design Change Impact on AEC-Q100

Table 2 Test #	A2	A3	A4	A5	A6	B	B2	B3	ភ	ß	ឌ	C4	C5	c6	5	D2	B3	D4	D5	Е	E3	E4	ES	E7	E3	E10	E1	<u>E12</u>	G1- G2-	G5	99 99	G7	ß	•
Test Abbreviation	THB	AC	TC	PTC	HTSL	нтог	ELFR	EDR	WBS	WBP	SD	Ы	SBS		EM	TDDB	Ю	NBTI	SM	HBM	CDM	E	ED	CHAR	EMC	sc	SER	5	MECH	DROP	ъ	DS	IWV	
DESIGN	·	·		·	-	·					•		-				·				-			· · ·		-	-		·					12
Active Element Design		•	•	м		•	•	DJ							D	D	D	D	D	•	•	•	•	•	•	•	•			F		\square		12
Circuit Rerouting			A	м																•	•	•	•	•	•	•								1 5
Wafer Dimension / Thickness			E	м		•	•		E	E								•		E	E	E	•											F
WAFER FAB																																		0
Lithography	•		•	м		•	G		•	•								•					•											H
Die Shrink	•	•		м		•	•	DJ							•	•	•	•	•	•	•	•	•	•	•	•	•							J
Diffusion/Doping				М		•	G											•		•	•	•	•	•										k
Polysilicon			•	М		•		DJ										•		•	•	•	•	•										Ι.
Metallization / Vias / Contacts	•	•	•	м		•			•	•					•				•				•	•		•								15
Passivation / Oxide / Interlevel Dielectric	к	к	•	м		•	GN	DJ	к	•						•	•	•	•	•	•	•	•	•										
Backside Operation			•	м		•														м	М	•		•					н			н		
FAB Site Transfer	•	•	•	М		•	•	J	•	•					•	•	•	•	•	•	•	•	•						н			н		ד
ASSEMBLY	-									-				-		-			-		-					-	-		-					1
Die Overcoat / Underfill	•	•	•	м	•	•																					•						н	
Leadframe Plating	•	•	•	м	•					С	•			•														Ŀ				н		
Bump Material / Metal System	•	•	•	М	•	•						•	•														•	Ŀ						
Leadframe Material		•	•	М	•					•	•	•		•												•		Ŀ	н			н		
Leadframe Dimension		•	•	м							•	•		•												•		F	н					
Wire Bonding	●	•	•	Q	•				•	•													М			•			н					
Die Scribe/Separate	•	•	•	М																														
Die Preparation / Clean	•	•		м		•			•	•																						н		
Package Marking											В																							
Die Attach	•	•	•	м		•																	•			•		F	н			н	н	
Molding Compound	•	•	•	м	•	•	•				•	•		•													•	L						
Molding Process	•	•	•	М	•	•					•	•		•														L						
Hermetic Sealing		н	н		н							н		Н															н		н		н	
New Package	•	•	•	М	•	•	•		•	•	•	•	Т	•						•	•		•			•		F	н			н	Н	
Substrate / Interposer	•	•	•	М	•	•			•	•			Т															F	н			н	н	
Assembly Site Transfer	•	•	•	М		•	•		•	•	•	•	Т	•									•					L	н			н	н	

Highly Recommended

- A Only for peripheral routing
- For symbol rework, new cure time, temp
- C If bond to leadfinger
- D Design rule change
- E Thickness only
- F MEMS element only
- Only from non-100% burned-in parts
- H Hermetic only
 - EPROM or E²PROM
 - Passivation only

For Pb-free devices only

- M For devices requiring PTC
- N Passivation and gate oxide
- Q Wire diameter decrease
- For Solder Ball SMD only

FAQ About AEC-Q100 Qual

- Do all qualification tests have to be performed for every new device?
- How long is qualification data valid?

End Product: Qual Report in PPAP

1. Device Information

Product:	Margeola
Package:	FCQFN2×3-14
Process Technology:	BCD
Report Date:	09/27/2018

2. Summary of Test Results

Test	#	Test Condition	Lot# or	Test Results	Comment
			Date Code	(S.S./Rej)	
Temperature, Bias,	B1	JESD22-A108,	HP5431	77/0	
and Operating Life		@+125°C for 1000	HP543101	77/0	
		hours or equivalent	HP543108	77/0	
Early Life Failure	B2	AEC-Q100-008, @	HA5138	800/0	
Rate (ELFR)		+125°C for 48 hours, or	HA9134	800/0	
		equivalent	H928211	800/0	
ESD: Human Body Model (HBM)	E2	AEC-Q100-002	HP543113	3/0	>2000V
ESD: Device Charged Model (CDM)	E3	AEC-Q100-011	HP543113	3/0	>750V
Latch-up	E4	AEC-Q100-004	HP543113	6/0	>+/-100mA & >1.5Vccmax
Moisture/Reflow	A1	J-STD-020	1731	276/0	MSL=1
Sensitivity			1804	276/0	
			1808	276/0	
Steady State	A2	JESD22-A101,	1731	77/0	
Temperature		@85°C/85%RH static	1804	77/0	
Humidity Bias Life Test		bias at Vinmax for 1000 hours or equivalent	1808	77/0	
Accelerated	A3	JESD22-A102,	1731	77/0	
Moisture		@121°C/100%RH for	1804	77/0	
Resistance- Unbiased Autoclave		168 hours or equivalent	1808	77/0	
Temperature	A4	JESD22-A104, from -	1731	77/0	
Cycling		65°C to 150°C for 1000	1804	77/0	
		cycles or equivalent	1808	77/0	
	-	1	1	1	1

Monolithic Power Systems, Inc.

Production Part Approval Process

Customer Part Number

MPS Part Number OPTIME APOIL 2

Revision: #1.0

Beyond Q100: EVB Burn-In

Beyond Q100: Road Test & EMC

MPQ4572GL R2 Quick Road Test Report

2A, 60V, High-Efficiency SYNC Buck

AE	Luke Wang
Supervisor	Huafei Ding
Manager	Zheng Luo
Date	2018-04-27

LOT:	Date code	IC Designer	Production Engineer
HP481815R2W20-C	1814	Surelly (Li) Xu	Lux Zhang

MPS

- 300-point application road test
- Grade 1: 25°C, -55°C, 150°C for margin
- Tests include stability/margin, ripple, fault response, load dump, cold crank
- CISPR25 radiated & conducted emissions testing

Beyond Q100: Short Term Reliability Monitoring

MPS "AEC1" Grade Production Lot

Finished Goods

Reserved for STRM

MPS Product Grades

*(SPC, Particle, PCM) & SBL/SYL

Product Qual

Supply Chain

AUTOMOTIVE POWER MANAGEMENT

AEC-Q100 Solutions

Additional resources: http://www.aecouncil.com

For more information, contact: automotive@monolithicpower.com

Check out our AEC-Q100 Power Management Solutions at MonolithicPower.com

