

EMI Virtual Lab

Zheng Luo – MPS

Table of Contents

Conducted EMI modeling and Case Study

Radiated EMI Modeling and Case Study

Traditional EMI Debug and Diagnostic Vs. Virtual Lab

Conducted EMI Modeling

Virtual Lab Result vs. Measurement

Test Condition: 12Vin, 5Vout, 3A Load current w/o filter, with spread spectrum

DUT: 40V Buck

Case Study – Do We Need Active EMI Filter?

Conducted EMI Comparison

Noise Transfer Gain Analysis

DM Inductor

How about replace the Active Filter with a capacitor?

Noise Transfer Function: Active Filter vs. Just Cap

Conducted EMI Result: Active Filter Vs. 10uF Cap

Radiated EMI Modeling

$$E = \sqrt{P_r \eta / 2\pi r^2}$$

Where, $P_r = \frac{1}{2} |I_{CM}|^2 R_r = \frac{|V_{CM}|^2}{2} \left[\frac{R_r}{|Z_{CM} + R_L + R_r + jX_A|^2} \right]$

Virtual Lab Result vs. Measurement

Test Condition: 12Vin, 10Vout, 350mA LED current w/o Filter

DUT: 40V Buck-Boost LED Driver

Case Study: Radiated EMI Analysis and Reduction

Measured vs. predicted CM terminal voltage V_{P3P1}

N/DIM

 V_{SW} , I_D , Z_{GND1} , Z_{GND2} are most important for radiated EMI on this Board

Visualization the Key Elements for the Radiated EMI

How to Reduce the Total GND Impedance?

Reduced Noise Source to Terminal CM Voltage Transfer Gain

Noise Source to Terminal CM voltage Transfer Gain Reduced 30dB

Further Reduce the Impedance Inside the Package

Z _{wire} (nH)	Z _{bump} (nH)
1.9	0.007

Reduce the Switching Noise

Splitted symmetric noise source

Buck-Boost EMI Comparison – 1st Gen vs. 2nd Gen

1st Gen, MPQ2483, not optimized for EMI

2nd Gen, MPQ7200 optimized for EMI

Max 45dB reduction after redesign the IC!