




**mPS**<sup>®</sup>

**e-Bike Charger Reference Design**  
230W PFC + LLC Battery Charger  
with Soft Connection

## Table of Contents

|     |                                                |    |
|-----|------------------------------------------------|----|
| 1   | Overview.....                                  | 3  |
| 1.1 | Description.....                               | 3  |
| 1.2 | Features .....                                 | 3  |
| 1.3 | Applications .....                             | 3  |
| 2   | System Definition.....                         | 4  |
| 2.1 | Block Diagram .....                            | 4  |
| 2.2 | Related Solutions.....                         | 4  |
| 2.3 | System Specifications.....                     | 4  |
| 3   | Design .....                                   | 5  |
| 3.1 | HR1203: PFC – LLC combo controller.....        | 5  |
| 3.2 | MP6924: Synchronous Rectifier controller ..... | 5  |
| 3.3 | MP26085: CC-CV controller.....                 | 5  |
| 3.4 | LLC converter stage.....                       | 6  |
| 3.5 | Schematic.....                                 | 7  |
| 3.6 | BOM .....                                      | 9  |
| 3.7 | Layout recommendations.....                    | 16 |
| 4   | Test Results.....                              | 17 |
| 4.1 | Test overview.....                             | 17 |
| 4.2 | Waveforms .....                                | 18 |
| 4.3 | Thermal Measurements .....                     | 21 |
| 4.4 | Conducted Emissions .....                      | 22 |
| 5   | Hardware start-up .....                        | 23 |
| 6   | DISCLAIMER.....                                | 24 |

## 1 Overview

### 1.1 Description

The MPSB005 is an evaluation board for Lithium-ion chargers typically used in the e-Mobility applications. It also can be used as general Power Supply Unit with minimum changes. The solution is based on a PFC+LLC combo solution from a single integrated circuit with digital control (PFC). This solution offers an excellent relation performance-cost-space by avoiding the use of low frequency filters. Synchronous Rectification (SR) is included instead of diodes to increase the efficiency, besides, a constant current constant voltage control (CC-CV) that operates to guarantee a proper charge of the battery. Combining HR1203, MP6924, MP26085 and the MPS LLC-Design web tool all system requirements can be accomplished. Also, high power density and excellent performance with low cost BOM are shown.

Lithium-Ion batteries usually bring a Battery Management System (BMS) to maintain the battery in its safe operating area. This charger can interact with this type of system through a 5V output presence signal. MPSB005 also implements a Soft Connection Control (SCC), with minimum components, to avoid high current spikes in the output connection. These spikes typically trigger the BMS over current protection. SCC is achieved by balancing the converter voltage with the battery one before closing the relay. If extra control is needed the user can solder J4 connector and attach an MCU. Then direct interaction with current and voltage sensing signals as well as the relay control are possible.

Finally, Electro Magnetic Compliance (EMC) conductive tests are done to fulfill the industry standards.

### 1.2 Features

- Wide Operating Input Range (from 90V to 265V)
- 230W Rated Power and Constant Voltage Output
- High Efficiency Up to 93%
- Meets EuP Lot 6 and COC Version 5 Tier 2 Specifications
- Meets Class C Standard of IEC61000-3-2
- Meets EN55032 Class B Standard
- High Power Factor (PF)
- Overload Protection (Auto-Restart Mode)
- Short-Circuit Protection (SCP) (Auto Restart Mode)
- Over-Voltage Protection (OVP)
- Anti-Capacitive Mode Protection
- Soft Connection Control (SCC)
- Form Factor 172 x 74 x 50 mm
- 



### 1.3 Applications

- e-Bike battery charger
- General AC/DC Power Supply

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are registered trademarks of Monolithic Power Systems, Inc. or its subsidiaries.



**Warning:** Although this board is designed to satisfy safety requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

## 2 System Definition

### 2.1 Block Diagram

The system blocks of the evaluation board are shown in the following figure. Also, the interaction of the MPS ICs with each part.

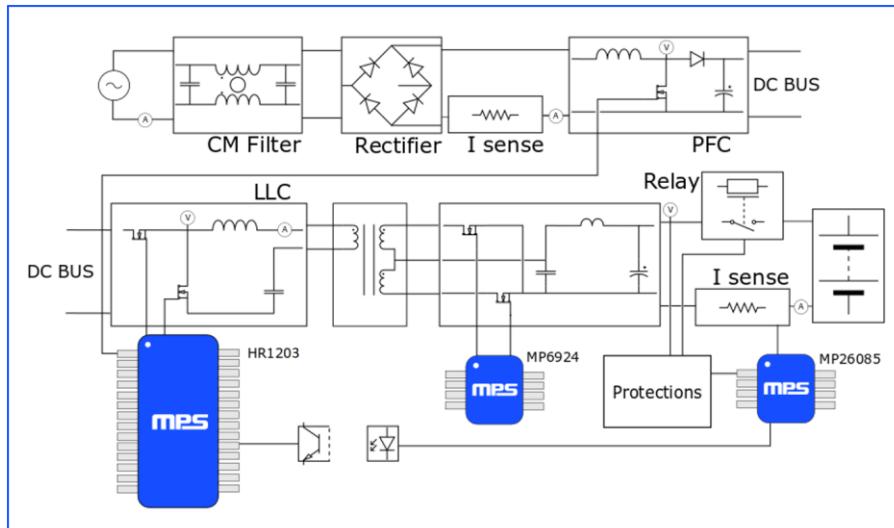



Figure 1: Block diagram

### 2.2 Related Solutions

The reference design is based on the following MPS solutions:

| MPS Integrated Circuit  | Description                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------|
| <a href="#">HR1203</a>  | High-Performance Digital PFC + LLC Combo Controller                                          |
| <a href="#">MP6924</a>  | Fast Turn-off, CCM/DCM Compatible Dual LLC Synchronous Rectifier with low Sleep Mode Current |
| <a href="#">MP26085</a> | CC/CV Controller                                                                             |

Table 1: System Integrated Circuits

### 2.3 System Specifications

The electric specifications of the reference design board are listed in the following table:

| PARAMETER                 | SPECIFICATION                                              |
|---------------------------|------------------------------------------------------------|
| Input Voltage Range       | 90 V to 265 V AC                                           |
| Output Voltage Range      | 32 V to 42 V $\pm 1.5\%$ DC                                |
| Output current            | 5.5 A $\pm 1.5\%$                                          |
| Nominal Conditions        | <b>Input: 230Vac Output: 36Vdc 5.5A</b>                    |
| Board form factor         | 172 x 74 x 50 mm                                           |
| Expected efficiency       | > 90 %                                                     |
| Standby power consumption | Meets EuP Lot 4 and COC Version 5 Tier 2 (<500 mW @ 265 V) |
| Conducted emissions       | EN55032 Class B Standard                                   |
| Output voltage ripple     | $\pm 50$ mV at Full load                                   |
| Output current ripple     | $\pm 60$ mA at Full load                                   |

Table 2: System Specifications

## 3 Design

### 3.1 HR1203: PFC – LLC combo controller

The HR1203 is a high-performance controller that integrates an advanced digital PFC controller and a half-bridge LLC resonant controller. The PFC of the HR1203 employs a patented average current control scheme, which can operate both in continuous conduction mode (CCM) and discontinuous conduction mode (DCM) according to the instantaneous condition of the input voltage and output load. The IC exhibits excellent efficiency and high-power factor (PF) at light load. The half-bridge LLC resonant converter achieves high efficiency with zero-voltage switching (ZVS).

The HR1203 implements an adaptive dead-time adjustment (ADTA) function to guarantee ZVS in different load conditions. Also, can prevent the LLC converter from operating in capacitive mode, making it more robust and easier to design. Additionally, integrates a high-voltage (HV) current source internally for start-up. When the AC input is removed, the HV current source also functions as an X-cap discharger.

### 3.2 MP6924: Synchronous Rectifier controller

The MP6924 is a dual, fast turn-off, intelligent rectifier for synchronous rectification in LLC resonant converters. The IC drives two N-channel MOSFETs, regulates their forward voltage drop to about 45mV, and turns the MOSFETs off before the switching current goes negative.

The MP6924 has a light-load function to latch off the gate driver under light-load conditions, limiting the current to 175 $\mu$ A. Also, fast turn-off enables both continuous conduction mode (CCM) and discontinuous conduction mode (DCM).

### 3.3 MP26085: CC-CV controller

The MP26085 is a voltage and current control IC with an integrated voltage reference which is suitable for battery charger design.

This IC compares the DC voltage and the current level at the output of the power supply to achieve the voltage reference and current limitation, respectively. It provides a feedback through an opto-coupler to the PWM controller IC at the primary side, HR1203 in this case.

### 3.4 LLC converter stage

To design the LLC converter, we used the LLC design tool from MPS available in the [web side](#).



Figure 2: LLC design tool



Figure 3: LLC design tool final results

### 3.5 Schematic

PFC.schDoc: Power Factor Correction stage (AC/DC).

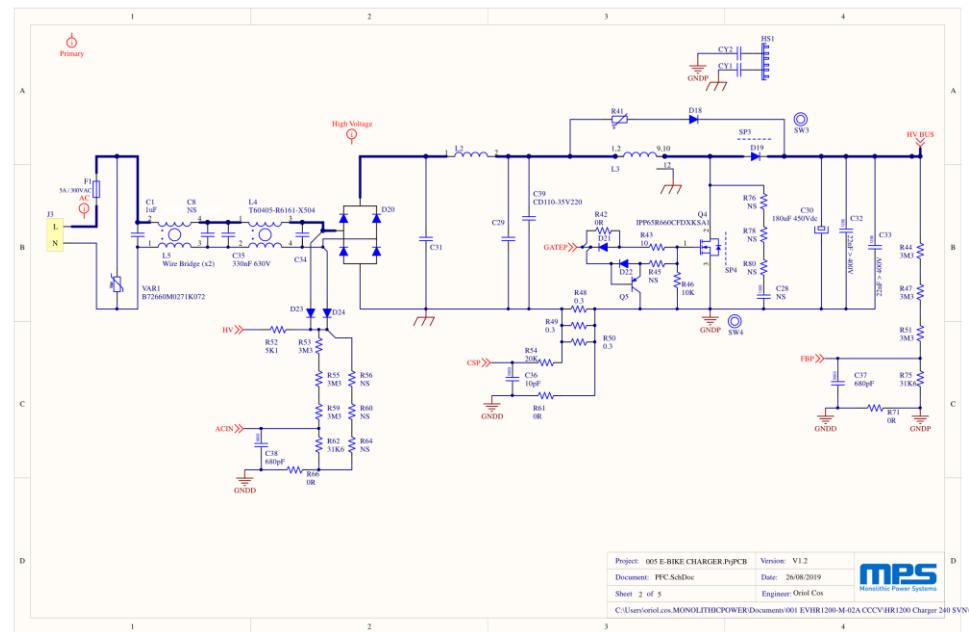



Figure 4: PFC Stage

LLC.schDoc: Resonant converter stage (DC/DC), bias secondary supply and CCCV.

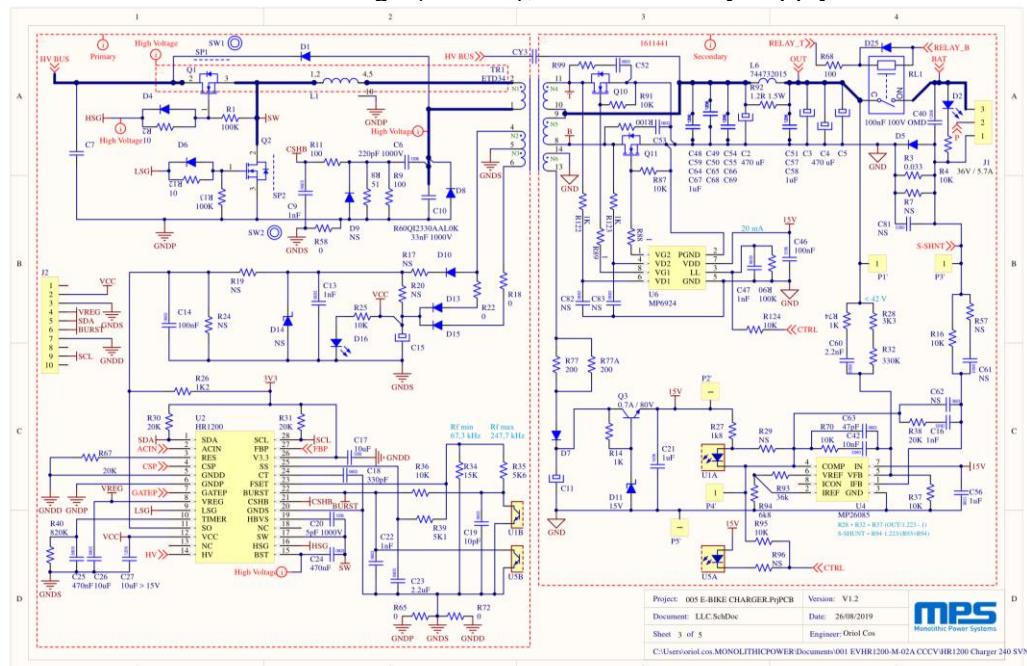



Figure 5: LLC Stage, CCCV and SR

## CTRL.schDoc: Relay control block.



**Figure 6: Relay control**

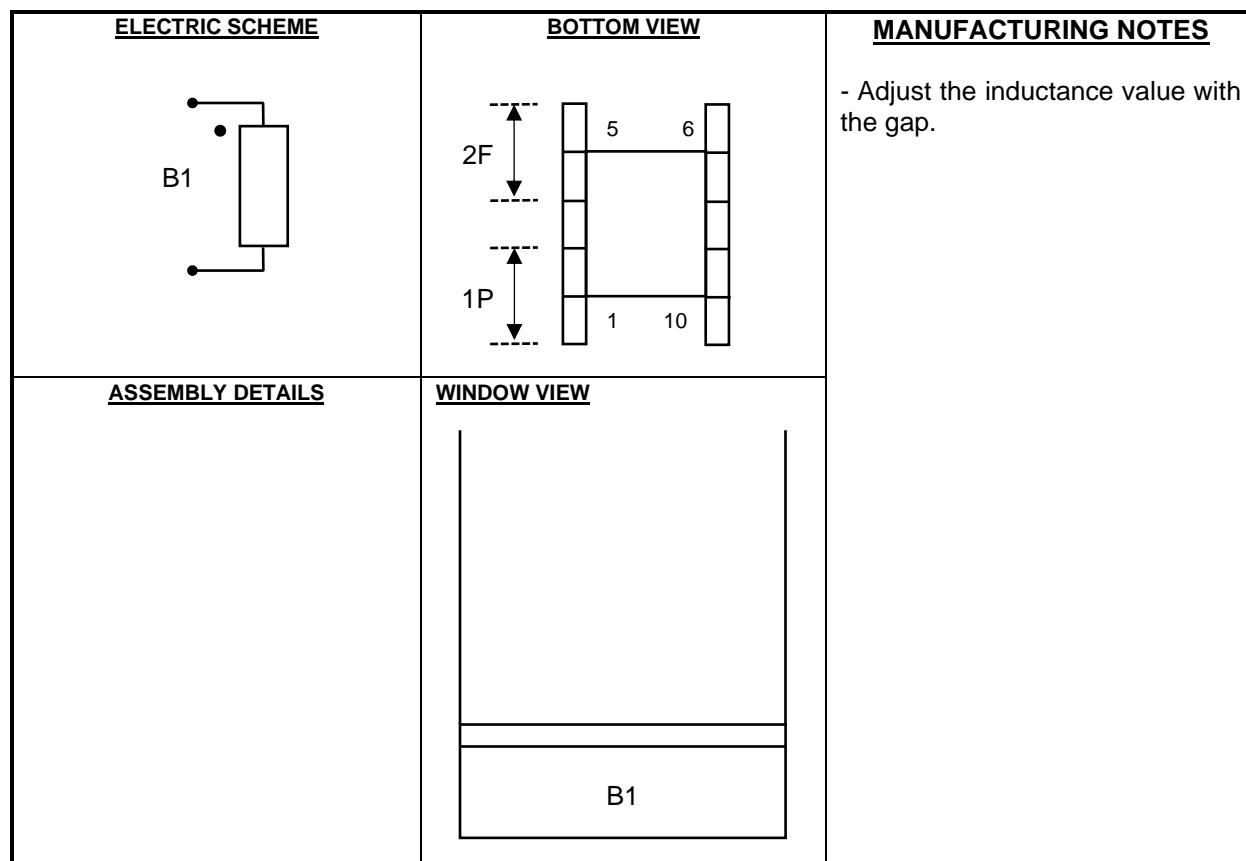
### 3.6 BOM

| Designator                                       | Qty | Value                          | Part Number        | Manufacturer           | Package        |
|--------------------------------------------------|-----|--------------------------------|--------------------|------------------------|----------------|
| C1                                               | 1   | 1uF                            | ECQ-E2W105KH       | Panasonic              | DIP            |
| C34, C35                                         |     | 33nF<br>630V                   | MKS4J023302E00KSSD | WIMA                   | DIP            |
| C2, C3, C4, C5                                   | 4   | 470 uF                         | ESK477M063AL4EA    | KEMET                  |                |
| C6                                               | 1   | 220pF<br>1000V                 | GRM31A7U3A221JW31D | Murata                 | 1206           |
| C7                                               | 1   | 330nF<br>630Vdc                | R60334-630-N       | NISSEI-<br>ARCOTRONICS |                |
| C9, C13, C16, C22,<br>C41, C43, C44, C45,<br>C47 | 9   | 1nF                            | 0603 1nF           |                        | 0603           |
| C10                                              | 1   | 33nF<br>1000V                  | R60QI2330AAL0K     | Kemet                  | DIP            |
| C11, C15, C39                                    | 3   | 220uF<br>35Vdc,<br>0.1 uF      | CD110-35V220       | JIANGHAI, Kemet        | r3.5mm,<br>DIP |
| C12, C46                                         | 2   | 100nF                          | 1206 100nF         |                        | 1206           |
| C14                                              | 1   | 100nF                          | 0603 100nF         |                        | 0603           |
| C17                                              | 1   | 10uF                           | 1206 10uF          |                        | 1206           |
| C18                                              | 1   | 330pF                          | 0603 330pF         |                        | 0603           |
| C19, C36                                         | 2   | 10pF                           | 0603 10pF          |                        | 0603           |
| C20                                              | 1   | 5pF<br>1000V                   | MC1206N4R7C102CT   | MULTICOMP              | 1206           |
| C21, C56                                         | 2   | 1uF                            | 1206 1uF           |                        | 1206           |
| C23                                              | 1   | 2.2uF                          | 0805 2.2uF         |                        | 0805           |
| C24                                              | 1   | 470nF                          | 0603 470nF         |                        | 0603           |
| C25                                              | 1   | 470nF                          | 0805 470nF         |                        | 0805           |
| C26                                              | 1   | 10uF                           | 0805 10uF          |                        | 0805           |
| C27                                              | 1   | 10uF ><br>15V                  | 1206 10uF 25V      |                        | 1206           |
| C28, C61, C62, C70,<br>C81, C82, C83, CY2        | 9   | NS                             |                    |                        |                |
| D14, D17, D21, D22, J2,<br>Q5, Q13, Q14          | 8   | NS                             |                    |                        |                |
| R7, R17, R19, R20,<br>R24, R29, R45, R56         | 8   | NS                             |                    |                        |                |
| R57, R60, R64, R76,<br>R78, R80, R96, R104       | 8   | NS                             |                    |                        |                |
| R115, R116, R117, U5                             | 8   | NS                             |                    |                        |                |
| C29, C31                                         | 2   | TF684<br>K2Y10<br>BL270<br>D9R | TF684K2Y10BL270D9R | CARLI                  | DIP            |
| C30                                              | 1   | 180uF<br>450Vdc                | ELG187M450AS3AA    | KEMET                  | DIP            |
| C32, C33                                         | 2   | 22nF ><br>400V                 | C1206V223KCRAC TU  | KEMET                  | 1206           |
| C37, C38                                         | 2   | 680pF                          | 0603 680pF         |                        | 0603           |

|                                           |   |                             |                    |                             |              |
|-------------------------------------------|---|-----------------------------|--------------------|-----------------------------|--------------|
| C40                                       | 1 | 100nF<br>100V<br>OMD        | VJ1206Y104KBBAT4X  | Vishay                      | 1206         |
| C42                                       | 1 | 10nF                        | 0603 10nF          |                             | 0603         |
| C48, C49, C50, C51,<br>C54, C55, C57, C58 | 9 | 1uF                         | GRM32DC72A475KE01L | Murata                      | 1206         |
| C59, C64, C65, C66,<br>C67, C68, C69      | 7 | 1uF                         | GRM32DC72A475KE01L | Murata                      | 1207         |
| C52, C53, C63                             | 3 | 47pF                        | 0603 47pF          |                             | 0603         |
| C60                                       | 1 | 2.2nF                       | 0603 2.2nF         |                             | 0603         |
| CY1, CY3                                  | 2 | 2n2<br>CY                   | DE1E3RA222MN4AN01F | Murata                      |              |
| D1, D8, D18                               | 3 | 24540<br>84,<br>RS1J        | RS1J               | ON<br>SEMICONDUCTO<br>R     | DO-<br>214AC |
| D2, D16                                   | 2 | Green                       | SML-D12P8WT86C     | ROHM                        | 0603         |
| D3                                        | 1 | 14949<br>41                 | TL431AIDBZTG4      | TEXAS<br>INSTRUMENTS        | SOT-23-3     |
| D4, D6, D9, D10, D25                      | 5 | 24532<br>69RL               | 1N4148WS           | ON<br>SEMICONDUCTO<br>R     | SOD-<br>323F |
| D5, D7, D13, D15                          | 4 | 18436<br>74                 | B160               | DIODES                      | DO-<br>214AC |
| D11, D12                                  | 2 | 15V                         | BZX84C18LT1G       | ON<br>SEMICONDUCTO<br>R     | SOT-23-3     |
| D19                                       | 1 | QH08<br>TZ600               | QH08TZ600          | POWER<br>INTEGRATIONS       | TO-<br>220AC |
| D20                                       | 1 | GBU8<br>J                   | GBU8J              | On Semiconductor            | GBU8L        |
| D23, D24                                  | 2 | WSGC<br>10DH                | WSGC10DH           | ZOWIE                       |              |
| F1                                        | 1 | 5A /<br>300VA<br>C          | SS-5H-5A-APH       | EATON<br>BUSSMANN<br>SERIES |              |
| HS1                                       | 1 | HS1                         | HS1                | MonolithicPowerS<br>ystems  |              |
| J1                                        | 1 | 400A<br>16A                 | MKDSN2,5/3-5.08    | PHOENIX<br>CONTACT          |              |
| J3                                        | 1 | 250V<br>2.5A                | RAPC322X           | Schurter                    | Screw        |
| J4                                        | 1 | 200-<br>FLE10<br>801GD<br>V | FLE-108-01-G-DV    | Samtec                      | SMD          |
| L1                                        | 1 |                             | 005-L1             | PROELEC                     | EF20         |
| L2                                        | 1 | 330u<br>3.1A                | 7447065            | Würth Elektronik            | 25x10        |
| L3                                        | 1 | 005-L3                      | 005-L3             | PROELEC                     | DIP          |
| L4                                        | 1 |                             | T60405-R6161-X504  | VAC                         |              |
| L5                                        | 1 | Wire<br>Bridge<br>(x2)      | Wire Bridge (x2)   |                             |              |

|                                              |   |                          |                   |                         |              |
|----------------------------------------------|---|--------------------------|-------------------|-------------------------|--------------|
| L6                                           | 1 | 1uH<br>7A                | 744732015         | WURTH<br>ELEKTRONIK     |              |
| Q1, Q2                                       | 2 | 0.54<br>ohm              | IPP65R380E6       | Infineon                | TO-<br>220AC |
| Q3                                           | 1 | 0.7A /<br>80V            | 2SCR514PFRAT100   | ROHM<br>Semiconductor   |              |
| Q4                                           | 1 | 650V<br>16A              | IPP65R660CFDXKSA1 | Infineon                | TO-<br>220AC |
| Q6, Q7                                       | 2 | 95252<br>97              | ZXM61P02F         | DIODES INC.             | SOT-23-3     |
| Q8, Q9                                       | 2 | 26303<br>54              | MVGSF1N03LT1G     | ON<br>SEMICONDUCTO<br>R | SOT-23-3     |
| Q10, Q11                                     | 2 | 100V<br>55A<br>19mR      | NVMFS6B14NLT1G    | ON<br>SEMICONDUCTO<br>R | SO-8FL       |
| Q12                                          | 1 | 60V<br>4.5A<br>117m<br>R | PCP1403-TD-H      | ON<br>SEMICONDUCTO<br>R | SOT-89-3     |
| R1, R13, R15, R23, R90                       | 5 | 100K                     | 0603 100K         |                         | 0603         |
| R2, R12                                      | 2 | 10R                      | 0805 10R          |                         | 0805         |
| R3                                           | 1 | 0.033                    | 2512              |                         | 2512         |
| R4, R6, R10, R16, R21,<br>R25, R33, R36, R37 | 9 | 10K                      | 0603 10K          |                         | 0603         |
| R46, R63, R70, R82,<br>R83, R87, R91, R95    | 8 | 10K                      | 604 10K           |                         | 0604         |
| R98, R99, R100, R103,<br>R124                | 6 | 10K                      | 605 10K           |                         | 0605         |
| R5, R14, R74, R84,<br>R102, R122, R123       | 7 | 1K                       | 0603 1K           |                         | 0603         |
| R8                                           | 1 | 51                       | 1206 51R          |                         | 1206         |
| R9, R68                                      | 2 | 100                      | 1206 100R         |                         | 1206         |
| R11, R81, R101                               | 3 | 100                      | 0603 100R         |                         | 0603         |
| R18, R22                                     | 2 | 0                        | 1206 0R           |                         | 1206         |
| R26                                          | 1 | 1K2                      | 0603 1K2          |                         | 0603         |
| R27                                          | 1 | 1k8                      | 0603 1K8          |                         | 0603         |
| R28                                          | 1 | 3K3                      | 0603 3K3          |                         | 0603         |
| R30, R31, R38, R54,<br>R67, R97, R127, R128  | 8 | 20K                      | 0603 20K          |                         | 0603         |
| R32                                          | 1 | 330K                     | 0603 330K         |                         | 0603         |
| R34                                          | 1 | 15K                      | 0603 15K          |                         | 0603         |
| R35                                          | 1 | 5K6                      | 0603 5K6          |                         | 0603         |
| R39, R85, R86                                | 3 | 5K1                      | 0603 5K1          |                         | 0603         |
| R40                                          | 1 | 820K                     | 0603 820K         |                         | 0603         |
| R41                                          | 1 | 2                        | SL22 2R018        | AMETHERM                | Disc<br>22mm |
| R42, R58, R61, R65,<br>R66, R71, R72         | 7 | 0R, 0                    | 603               |                         | 0603         |
| R43                                          | 1 | 10                       | 0603 10R          |                         | 0603         |
| R44, R47, R51, R53,<br>R55, R59              | 6 | 3M3                      | 1206 3M3          |                         | 1206         |
| R48, R49, R50                                | 3 | 0.3                      | MCWW25XR300FTL    | MULTICOMP               | 2512         |

|                    |   |                     |                    |                            |                          |
|--------------------|---|---------------------|--------------------|----------------------------|--------------------------|
| R52                | 1 | 5K1                 | 1206 5K1           |                            | 1206                     |
| R62, R75           | 2 | 31K6                | 0603 31K6          |                            | 0603                     |
| R69, R73           | 2 | 75K                 | 0603 75K           |                            | 0603                     |
| R77, R77A          | 2 | 200                 | 1206 200R          |                            | 1206                     |
| R79                | 1 | 1M                  | 0603 1M            |                            | 0603                     |
| R88, R89           | 2 | 1                   | 0603 1R            |                            | 0603                     |
| R92                | 1 | 1.2R<br>1.5W        | 35221R2JT          | TE                         | 2512                     |
| R93                | 1 | 36k                 | 0603 36K           |                            | 0603                     |
| R94                | 1 | 6k8                 | 0603 6K8           |                            | 0603                     |
| R125, R126         | 2 | 220                 | 1206 220R          |                            | 1206                     |
| RL1                | 1 | 18916<br>75         | OJE-SS-124HMF,F000 | OEG - TE<br>CONNECTIVITY   | DIP                      |
| SP1, SP2, SP3, SP4 | 4 | 3.5W/<br>m.K<br>4kV | 2015-54            | BERGQUIST                  | TO-220                   |
| SW1, SW2, SW3, SW4 | 4 | 534-<br>3103,<br>M2 | 3103               | Keystone                   | M2                       |
| TR1                | 1 |                     | 005-TR1            | PREELEC                    | ETD34_V                  |
| U1                 | 1 | 23225<br>14         | FOD817A3SD         | ON<br>SEMICONDUCTO<br>R    | DIP SMD                  |
| U2                 | 1 |                     | HR1200GY           | MonolithicPowerS<br>ystems | SOIC-<br>28/TSSO<br>P-28 |
| U3                 | 1 | 11030<br>10         | TL074CD            | TEXAS<br>INSTRUMENTS       | SOIC-14                  |
| U4                 | 1 |                     | MP26085DJ          | MonolithicPowerS<br>ystems | SOIC-8                   |
| U6                 | 1 |                     | MP6924GS           | MonolithicPowerS<br>ystems | SOIC-8                   |
| VAR1               | 1 | 99585<br>84         | B72660M0271K072    | EPCOS                      | 4032                     |


**Table 3: Bill of Materials**

|            |                            |                 |        |
|------------|----------------------------|-----------------|--------|
| <b>MPS</b> | <b>INDUCTIVE COMPONENT</b> | <b>CODE</b>     | 005-L1 |
|            |                            | <b>DESIGNER</b> | O. Cos |

**MATERIALS LIST**

| Quantity | Units | Description                 |
|----------|-------|-----------------------------|
| 1        | -     | EF20 (vertical) coil former |
| 2        | -     | ½ core N87 / 3C94           |
|          | -     | Gap                         |
|          | -     | Litz 200x0.05               |

| <b>WINDINGS</b> |       |     | <b>Turns</b> | <b>WIRE</b>   |       |       | <b>PINOUT</b> |      | <b>TUBE</b> |     | <b>INSULATORS</b> |             | <b>ELECTRIC</b> |      |
|-----------------|-------|-----|--------------|---------------|-------|-------|---------------|------|-------------|-----|-------------------|-------------|-----------------|------|
| #               | Start | End |              | Ø             | Class | Color | Start         | End  | Start       | End | Layers            | Mater.      | Ω               | µH   |
| B1              | 1P    | 2F  | 40           | Litz 200x0.05 | -     |       | 1, 2          | 4, 5 | No          | No  | 2                 | Poly. Adhe. | -               | 71.3 |



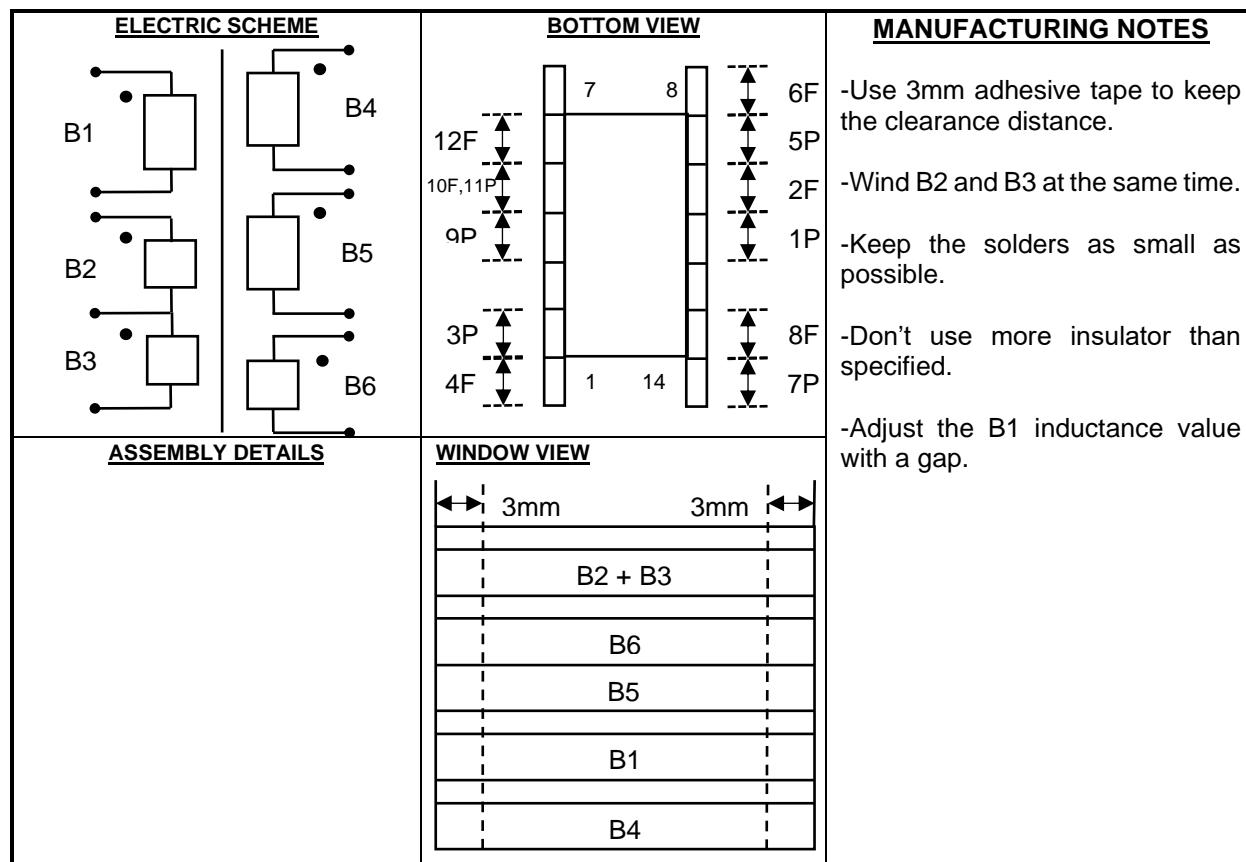
**VERIFICATION**

|            |                             |
|------------|-----------------------------|
| Inductance | B1 = 71.3 µH ( $\pm 15\%$ ) |
|------------|-----------------------------|

|            |                            |                 |        |
|------------|----------------------------|-----------------|--------|
| <b>MPS</b> | <b>INDUCTIVE COMPONENT</b> | <b>CODE</b>     | 005-L3 |
|            |                            | <b>DESIGNER</b> | O. Cos |

| <b>MATERIALS LIST</b> |       |                            |  |
|-----------------------|-------|----------------------------|--|
| Quantity              | Units | Description                |  |
| 1                     | -     | PQ 32-30 coil former Norwe |  |
| 2                     | -     | ½ core PQ 32-30, 3C90      |  |
|                       | -     | Gap                        |  |
|                       | -     | Litz 100x0.1               |  |

| <b>WINDINGS</b> |       |     | <b>Turns</b> | <b>WIRE</b>  |       |       | <b>PINOUT</b> |       | <b>TUBE</b> |     | <b>INSULATORS</b> |             | <b>ELECTRIC</b> |     |
|-----------------|-------|-----|--------------|--------------|-------|-------|---------------|-------|-------------|-----|-------------------|-------------|-----------------|-----|
| #               | Start | End |              | Ø            | Class | Color | Start         | End   | Start       | End | Layers            | Mater.      | Ω               | µH  |
| B1              | 1P    | 2F  | 30           | Litz 100x0.1 | -     | -     | 1, 2          | 9, 10 | No          | No  | 2                 | Poly. Adhe. | -               | 260 |


| <u><b>ELECTRIC SCHEME</b></u>  |  | <u><b>BOTTOM VIEW</b></u> |  | <u><b>MANUFACTURING NOTES</b></u>                                                                                                                                                                                              |  |
|--------------------------------|--|---------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                |  |                           |  | <ul style="list-style-type: none"> <li>- Adjust the inductance value with the gap.</li> <li>- Keep the 2F solder inside the plastic perimeter. To avoid short circuits with the heat sink. <i>Assembly details.</i></li> </ul> |  |
| <u><b>ASSEMBLY DETAILS</b></u> |  | <u><b>WINDOW VIEW</b></u> |  |                                                                                                                                                                                                                                |  |
|                                |  |                           |  |                                                                                                                                                                                                                                |  |
|                                |  |                           |  |                                                                                                                                                                                                                                |  |

| <b>VERIFICATION</b> |  |                            |
|---------------------|--|----------------------------|
| Inductance          |  | B1 = 260 µH ( $\pm 15\%$ ) |

|  |                            |          |         |
|--|----------------------------|----------|---------|
|  | <b>INDUCTIVE COMPONENT</b> | CODE     | 005-TR1 |
|  |                            | DESIGNER | O. Cos  |

| MATERIALS LIST |       |                                    |
|----------------|-------|------------------------------------|
| Quantity       | Units | Description                        |
| 1              | -     | ETD34 coil former (vertical) Norwe |
| 2              | -     | ½ core ETD34, N87 / 3C94           |
|                | -     | Litz 200 x 0.05                    |
|                | -     | Litz 100 x 0.1                     |
|                | -     | 0.4                                |
|                | -     | Gap                                |

| WINDINGS |       |     | Turns | WIRE          |       |       | PINOUT |     | TUBE  |     | INSULATORS |                | ELECTRIC |       |
|----------|-------|-----|-------|---------------|-------|-------|--------|-----|-------|-----|------------|----------------|----------|-------|
| #        | Start | End |       | Ø             | Class | Color | Start  | End | Start | End | Layers     | Mater.         | Ω        | uH    |
| B4       | 1P    | 2F  | 5     | Litz 100x0.1  | -     | -     | 11     | 10  | Yes   | Yes | 3          | Poly. 50 $\mu$ | -        | -     |
| B1       | 3P    | 4F  | 26    | Litz 200x0.05 | -     | -     | 2      | 1   | Yes   | Yes | 3          | Poly. 50 $\mu$ | -        | 311.8 |
| B5       | 5P    | 6F  | 5     | Litz 100x0.1  | -     | -     | 9      | 8   | Yes   | Yes | 1          | Poly. 50 $\mu$ | -        | -     |
| B6       | 7P    | 8F  | 4     | 0.4           | -     | -     | 14     | 13  | Yes   | Yes | 3          | Poly. 50 $\mu$ | -        | -     |
| B2       | 9P    | 10F | 4     | 0.4           | -     | -     | 4      | 5   | Yes   | Yes | -          | -              | -        | -     |
| B3       | 11P   | 12F | 4     | 0.4           | -     | -     | 5      | 6   | Yes   | Yes | 2          | Poly. Adhe.    | -        | -     |



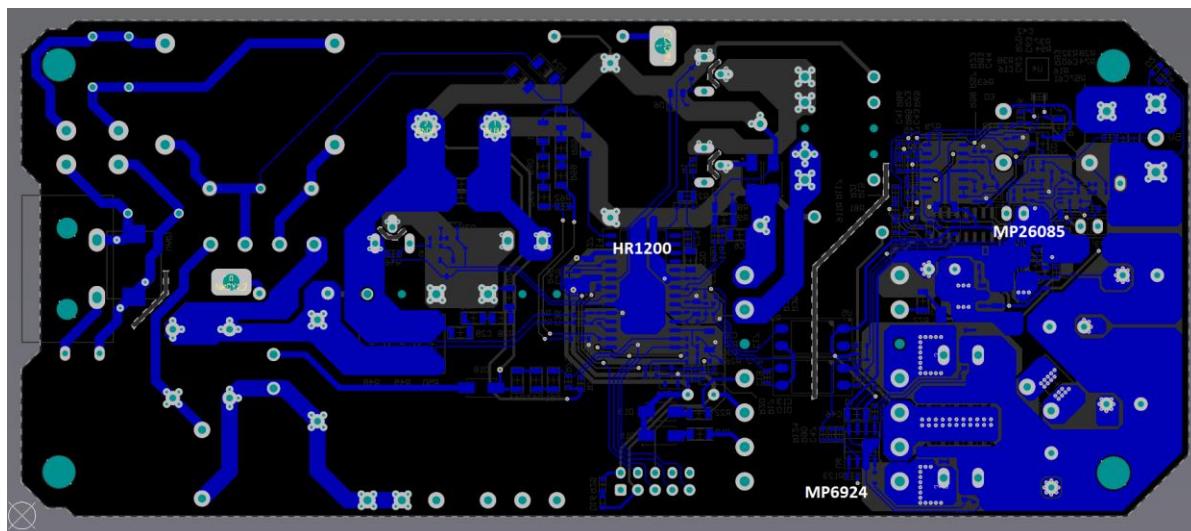
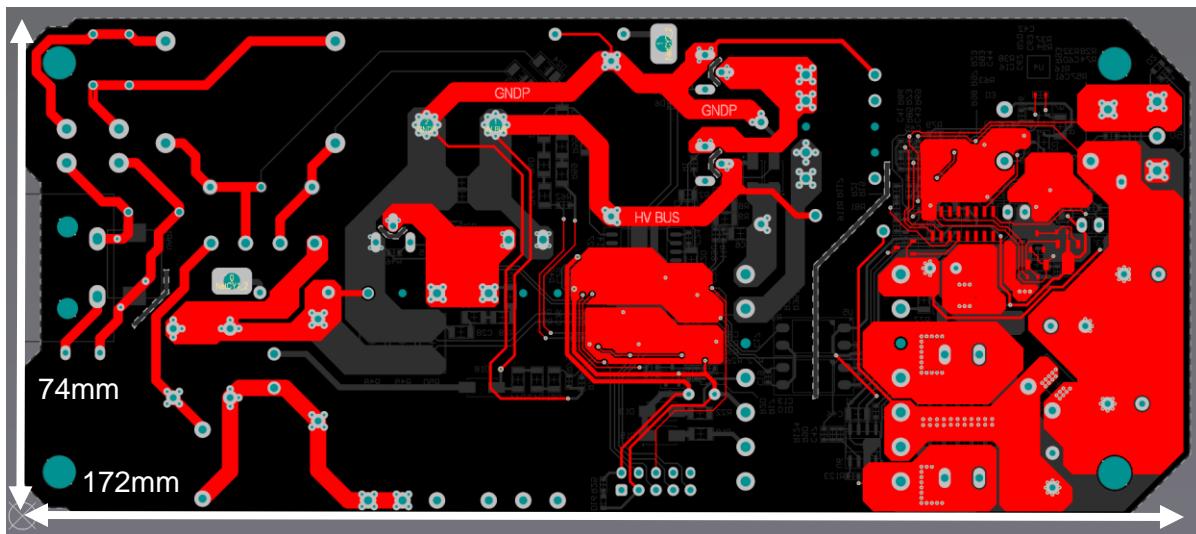
| VERIFICATION        |                                    |                                 |                                      |
|---------------------|------------------------------------|---------------------------------|--------------------------------------|
| Inductance          | B1 = 311 uH ( $\pm 15\%$ )         |                                 |                                      |
| Turns ratio         | n = N <sub>2</sub> /N <sub>1</sub> |                                 |                                      |
| Dielectric strength | Connect pins<br>1, 2, 4, 5, 6      | Voltage<br>3000 V <sub>AC</sub> | Connect pins<br>8, 9, 10, 11, 13, 14 |

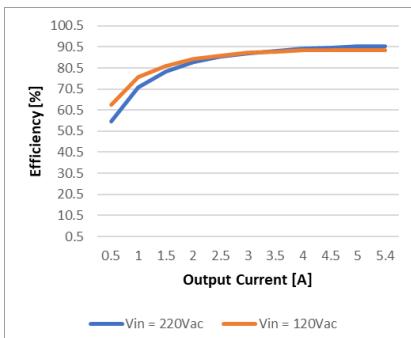
### 3.7 Layout recommendations

As the HR1203 is a combo solution the best place to be is in between the two stages (PFC-LLC) to reduce the length of the gate signals and the sensing ones. C18 connected to pin CT(U2.24), in charge of setting the switching frequency of the LLC bridge, and R67 connected to pin RES (U2.3), to produce the system clock, need to be as close as possible to the device. Also, the reader needs to take special care with the sensing signals, avoid big loops and rout them away from switching nodes.

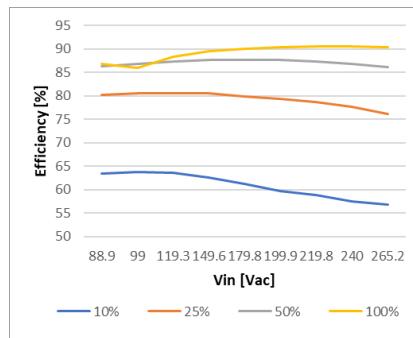
Other topics to take in consideration as a general AC/DC design are the following:

- Isolation from N and L lines to ground (typically 3 mm).
- Isolation from Primary to Secondary (typically 6 mm).
- Do not place copper planes under CM and DM filters.
- If more than one CM filter is used place it 90° to avoid cross talk and increase the effectivity.
- Reduce high dV/dt (PFC and LLC switch) nodes area and dl/dt loops (output rectification).
- Place decoupling capacitors near the ICs >100nF and connect power ground and signal ground in a single point near the bulk capacitor.
- Adequate the wide of the traces to its usage. AC and High Voltage narrow DC and Low voltage wide. (typically, 1 A/mm).

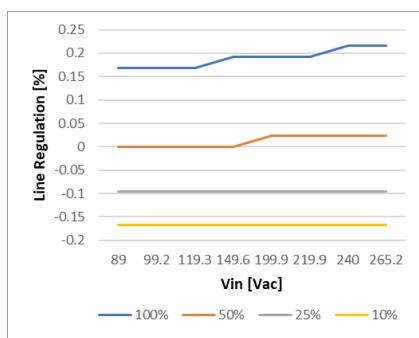





Figure 4: PCB bottom layer.

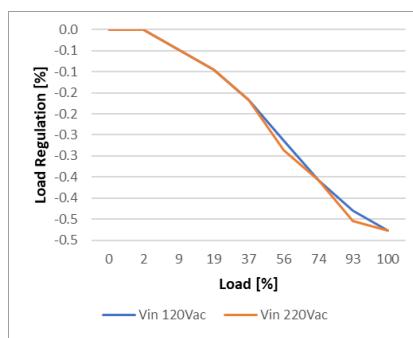



**Figure 7: PCB top layer.**

## 4 Test Results


## 4.1 Test overview




**Figure 8: Efficiency vs. Load**



**Figure 9: Efficiency vs. Vin**



**Figure 10: Line regulation**



**Figure 11: Load Regulation**

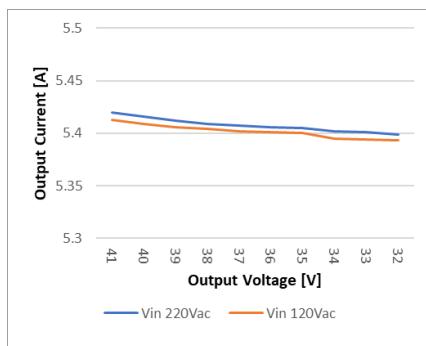



Figure 12: Output current

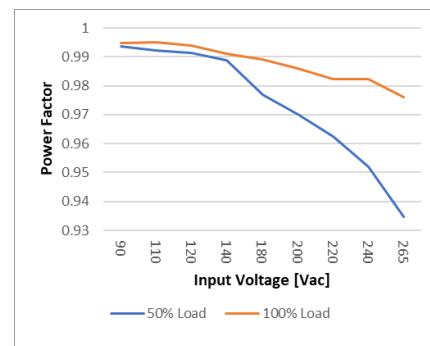



Figure 11: Power Factor

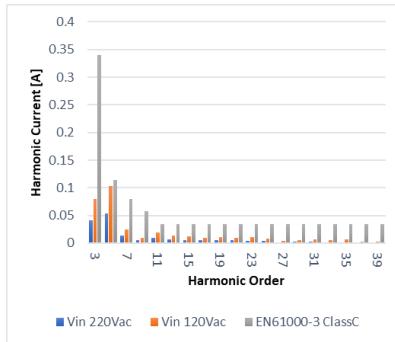



Figure 12: Current harmonic distribution

## 4.2 Waveforms

In the following section some waveforms are shown to prove the correct operation of the evaluation board. If not specified the operation conditions are the nominal ones (Table 1).

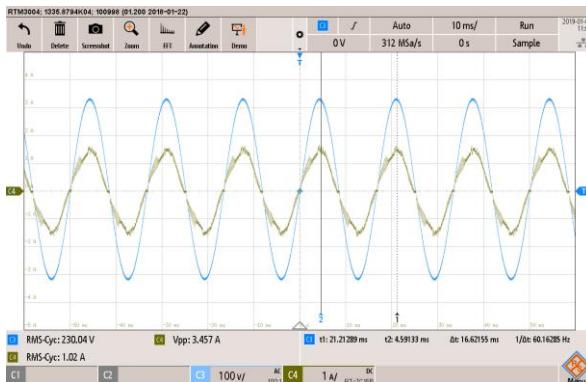
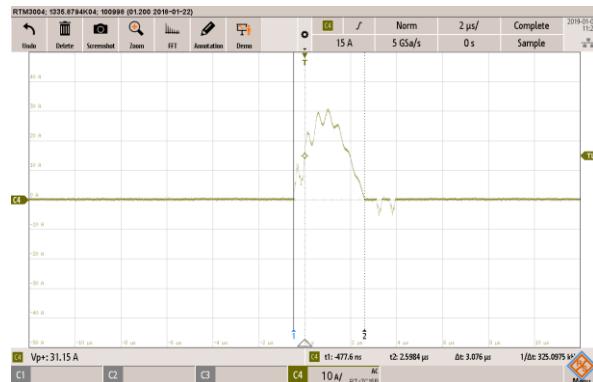
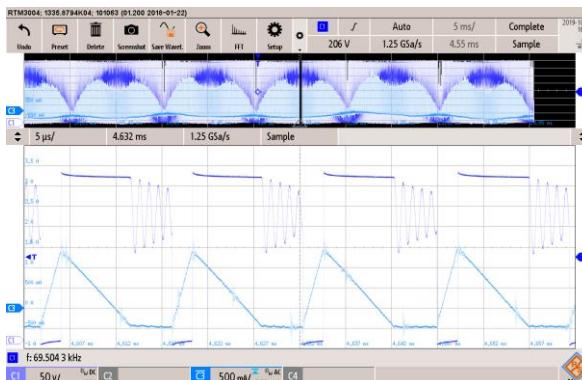
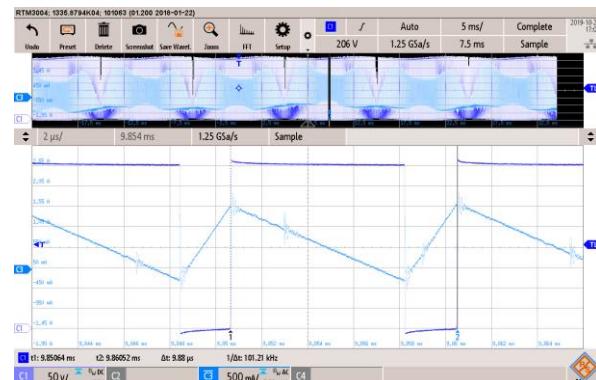



Figure 13: Input characteristics

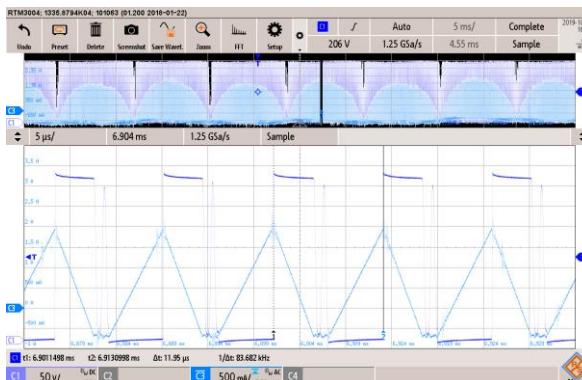
Vin 220Vac, Vout 42V, Iout 5.5A

Waveforms:  
 C3: Input AC voltage (100V/div)  
 C4: Input AC current (1A/div)

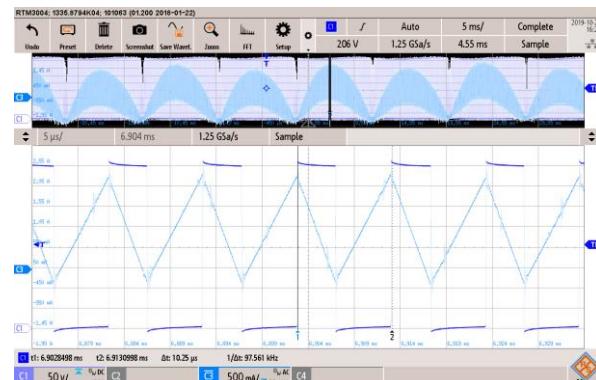





Figure 14: System inrush current

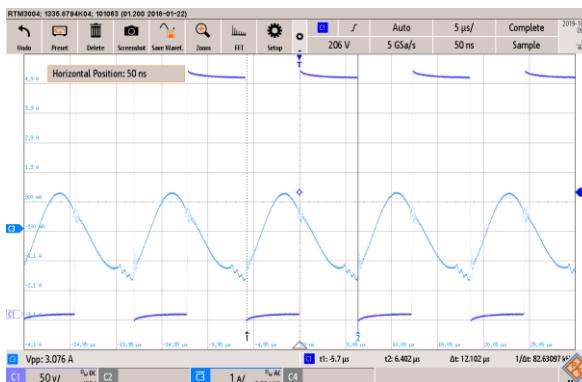
Vin 220Vac, No load


Waveforms:  
 C3: Input AC current (10A/div)

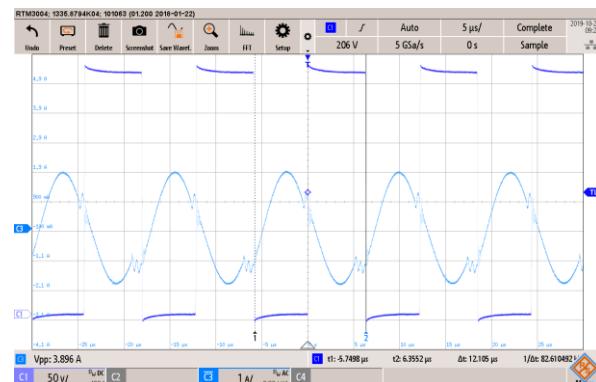



**Figure 15: PFC High Line – Half Load**  
 Vin 220Vac, Vout 42V, Iout 2.75A (50% Load)  
 Waveforms: C1: Switch node voltage PFC (50V/div)  
 C3: PFC Ind. current (500mA/div)

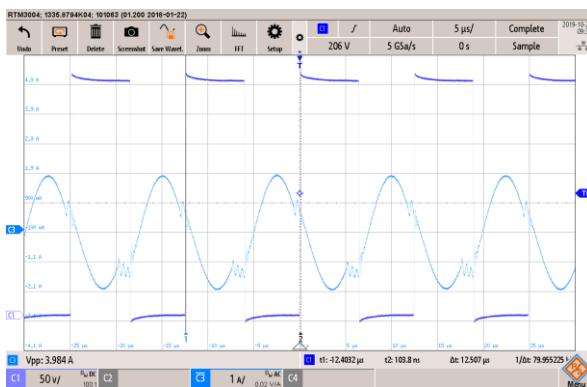



**Figure 16: PFC High Line – Full Load**  
 Vin 220Vac, Vout 42V, Iout 5.5A (100% Load)  
 Waveforms: C1: Switch node voltage PFC (50V/div)  
 C3: PFC Ind. current (500mA/div)




**Figure 17: PFC Low Line – Half Load**  
 Vin 110Vac, Vout 42V, Iout 2.75A (50% Load)  
 Waveforms: C1: Switch node voltage PFC (50V/div)  
 C3: PFC Ind. current (500mA/div)

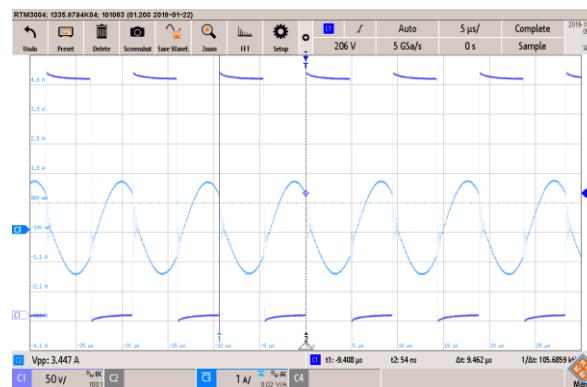



**Figure 18: PFC Low Line – Full Load**  
 Vin 110Vac, Vout 42V, Iout 5.5A (100% Load)  
 Waveforms: C1: Switch node voltage PFC (50V/div)  
 C3: PFC Ind. current (500mA/div)



**Figure 19: LLC Constant Current – Half Load**  
 Vin 220Vac, Vout 42V, Iout 2.75A (50% Load)  
 Waveforms: C1: Switch node voltage LLC (50V/div)  
 C3: Resonant Ind. current (500mA/div)

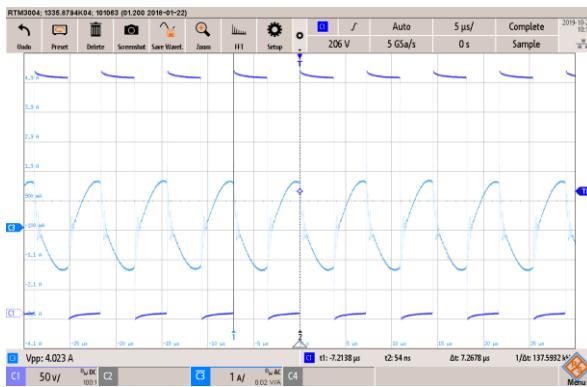



**Figure 20: LLC Constant Current – Full Load**  
 Vin 220Vac, Vout 42V, Iout 5.5A (100% Load)  
 Waveforms: C1: Switch node voltage LLC (50V/div)  
 C3: Resonant Ind. current (500mA/div)



**Figure 21: LLC Constant Voltage – 41V**

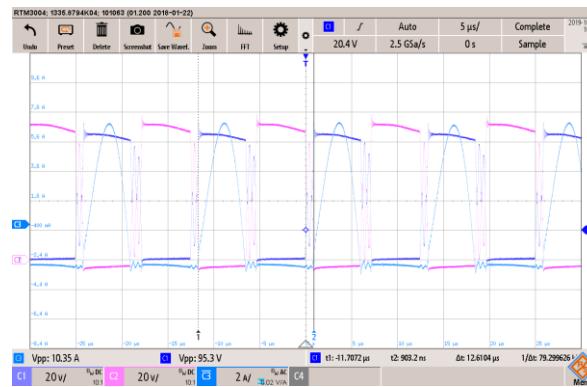
Vin 220Vac, Vout 41V, Iout 5.5A


Waveforms: C1: Switch node voltage LLC (50V/div)  
C3: Resonant Ind. current (500mA/div)



**Figure 22: LLC Constant Voltage – 36V**

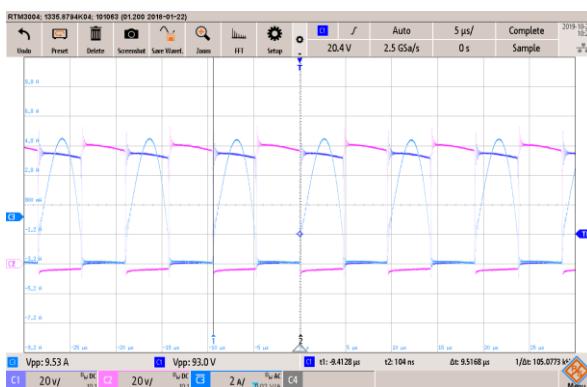
Vin 220Vac, Vout 36V, Iout 5.5A


Waveforms: C1: Switch node voltage LLC (50V/div)  
C3: Resonant Ind. current (500mA/div)



**Figure 23: LLC Constant Voltage – 32V**

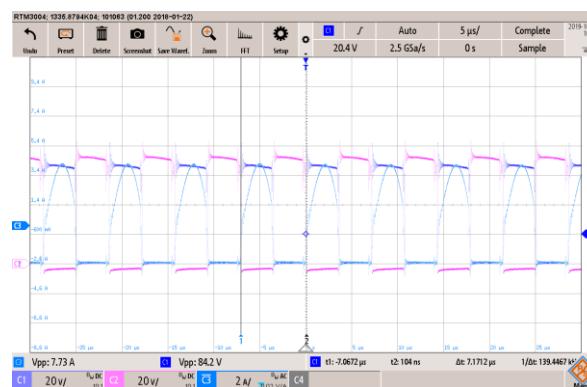
Vin 220Vac, Vout 32V, Iout 5.5A


Waveforms: C1: Switch node voltage LLC (50V/div)  
C3: Resonant Ind. current (500mA/div)



**Figure 24: SR Constant Voltage – 41V**

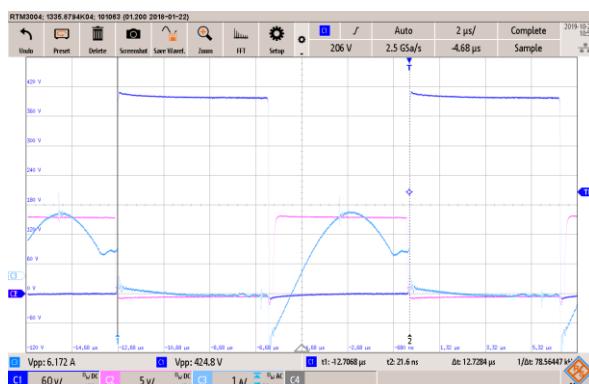
Vin 220Vac, Vout 41V, Iout 5.5A


Waveforms: C1: Q10 Drain Source voltage (20V/div)  
C2: Q12 Drain Source voltage (20V/div)  
C3: Q12 Drain Source current (2A/div)



**Figure 25: SR Constant Voltage – 36V**

Vin 220Vac, Vout 36V, Iout 5.5A


Waveforms: C1: Q10 Drain Source voltage (20V/div)  
C2: Q12 Drain Source voltage (20V/div)  
C3: Q12 Drain Source current (2A/div)

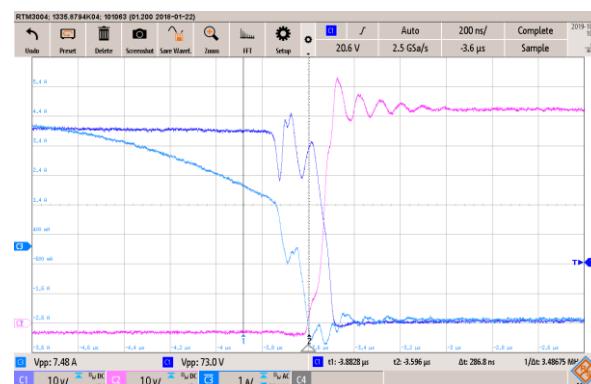


**Figure 26: SR Constant Voltage – 32V**

Vin 220Vac, Vout 32V, Iout 5.5A

Waveforms: C1: Q10 Drain Source voltage (20V/div)  
C2: Q12 Drain Source voltage (20V/div)  
C3: Q12 Drain Source current (2A/div)




**Figure 27: Q2 Soft Switching detail**

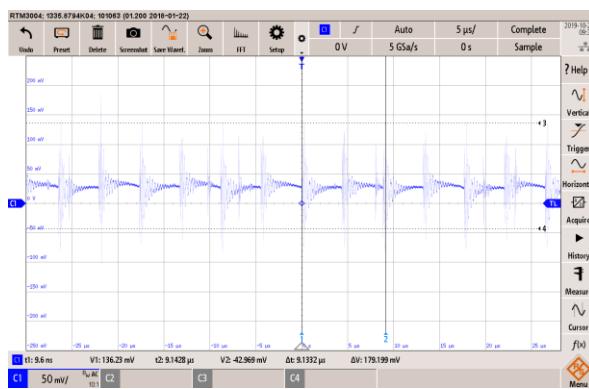
Vin 220Vac, Vout 36V, Iout 5.5A

Waveforms: C1: Q2 Drain Source voltage (60V/div)

Waveforms: C2: Q2 Gate Source voltage (5V/div)

Waveforms: C3: Q2 Drain Source current (1A/div)

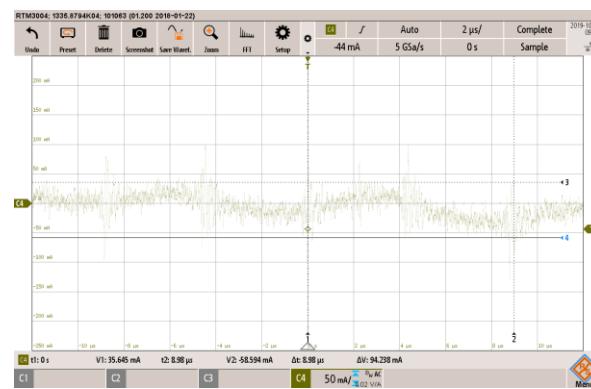



**Figure 28: Q12 Soft Switching detail**

Vin 220Vac, Vout 32V, Iout 5.5A

Waveforms: C1: Q10 Drain Source voltage (20V/div)

Waveforms: C2: Q12 Drain Source voltage (20V/div)


Waveforms: C3: Q12 Drain Source current (2A/div)

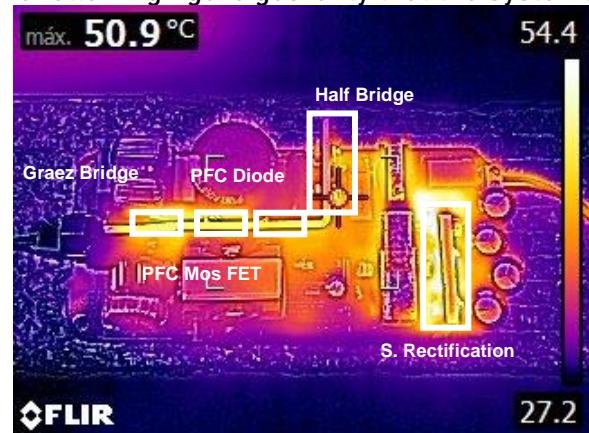


**Figure 29: Output Voltage Ripple (C40)**

Vin 220Vac, Vout 42V, Iout 5.5A, Fsw LLC 85kHz

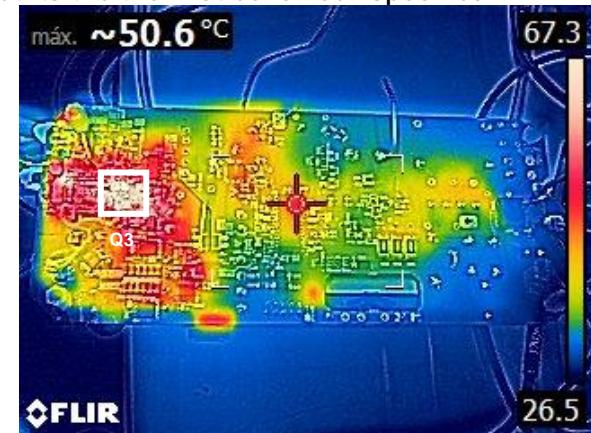
Waveforms: C1: Output voltage ripple (50mV/div)




**Figure 30: Output Current Ripple**

Vin 220Vac, Vout 42V, Iout 5.5A, Fsw LLC 85kHz

Waveforms: C4: Output current ripple (50mV/div)


### 4.3 Thermal Measurements

The following figure guaranty that the systems fulfils the thermal behaviour specified.



**Figure 31: Thermal image (Top View)**

Vin 220Vac, Vout 42V, Iout 5.5A, 25°C



**Figure 32: Thermal image (Bottom View)**

Vin 220Vac, Vout 42V, Iout 5.5A, 25°C

### 4.4 Conducted Emissions



## 5 Hardware start-up

To quick start the EVB, follow the steps below:

1. Pre-set the AC power supply to 90 VAC  $\leq$  VIN  $\leq$  265 VAC.
2. Turn the power supply off.
3. Connect the line and neutral terminals of the power supply output to the L (J3, L) and N (J3, N) ports.

If you are using the board as a **Charger** (skip steps 11-14):

4. Connect the charger presence signal (P, J1.2) to the BMS system.
5. Connect the positive terminal (+) of the BMS system to V<sub>OUT</sub> (J1, 3).
6. Connect the negative terminal (–) of the BMS system to GND (J1,1).
7. Connect the charger to the mains or AC power supply.
8. Once you receive a 5V signal at J1.2, apply the battery voltage at the charger terminals (J1, 3 and 1).
9. The charger will automatically adequate its voltage to the battery one, switch the relay and start charging the battery.
10. After removing the battery disconnect the charger to reset the output relay.

If you are using the board as a **Power Supply Unit** (skip steps 4-10):

11. Bypass the relay and remove R95.
12. Connect the positive terminal (+) of the load to V<sub>OUT</sub> (J1, 3).
13. Connect the negative (–) of the load to GND (J1,1).
14. Connect to the mains or AC power supply on after making the connections.

## 6 DISCLAIMER

Monolithic Power Systems (MPS) reserves the right to make changes to its products and to discontinue products without notice. The applications information, schematic diagrams, and other reference information included herein is provided as a design aid only and are therefore provided as-is. MPS makes no warranties with respect to this information and disclaims any implied warranties of merchantability or non-infringement of third-party intellectual property rights.

MPS cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an MPS product. No circuit patent licenses are implied.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

**MPS PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE  
SUITABLE FOR USE IN LIFE SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR  
OTHER  
CRITICAL APPLICATIONS.**

Inclusion of MPS products in critical applications is understood to be fully at the risk of the customer.

Questions concerning potential risk applications should be directed to MPS.

MPS semiconductors are typically used in power supplies in which high voltages are present during operation. High-voltage safety precautions should be observed in design and operation to minimize the chance of injury.