
Replacing Optical Encoders with Magnetic Position Sensors

April 2023

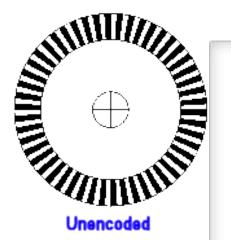
Agenda

Types of Optical Encoders

Comparison to Magnetic Position Sensors

Typical Motor Applications

Choosing a Magnetic Sensor


Target Magnet Decisions

Simulation for Magnetics/Mechanicals

Q&A

Types of Optical Encoders

Absolute Position

8 tracks = 8 bits: requires 8 LED / receiver pairs

Cost scales with resolution

Digi-Key Sampling of Optical Encoders

Heavy Duty Hollowshaft Encoder

Key Features

- Phased Array Sensor for Reliable Signal Output
- Rugged Design Withstands up to 400G Shock and 20G Vibration
- Unbreakable Code Disc up to 5000 PPR
- Heavy Duty Design Rated for IP67
- Customizable Mounting Options including Torque Arm with Optional Grounding Strap

Digi-Key Price: \$979

TMCS-40 is a low-cost and small-size optical incremental encoder for use with stepper motors and 3-phase PMSM/BLDC motors. It comes with high resolution optical code wheels with a resolution of 10.000 lines (40.000 counts).

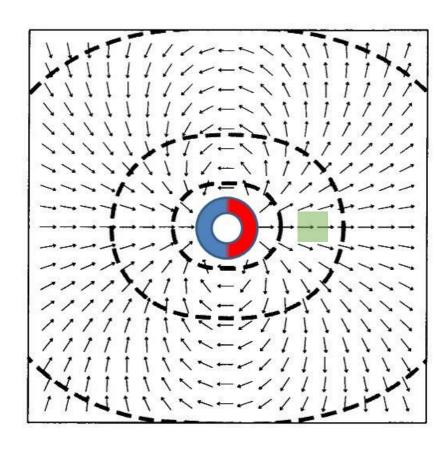
Features

- Two channel quadrature output with optional index pulse
- Quick and easy assembly
- · No signal adjustment required
- External mounting ears available
- Low cost
- Resolutions up to 1024 counts per revolution
- Small size –40°C to 100°C operating temperature
- TTL compatible
- Single 5 V supply

Digi-Key Price: \$56

- Compact Ø20mm size package
- 3 million cycles rotational life (1 million cycles with detent)
- 24 PPR resolution
- Wide operating temperature range (-10°C to +85°C)
- 5.0 VDC and 3.3 VDC power options
- Integrated Schmitt trigger and pull-up resistor

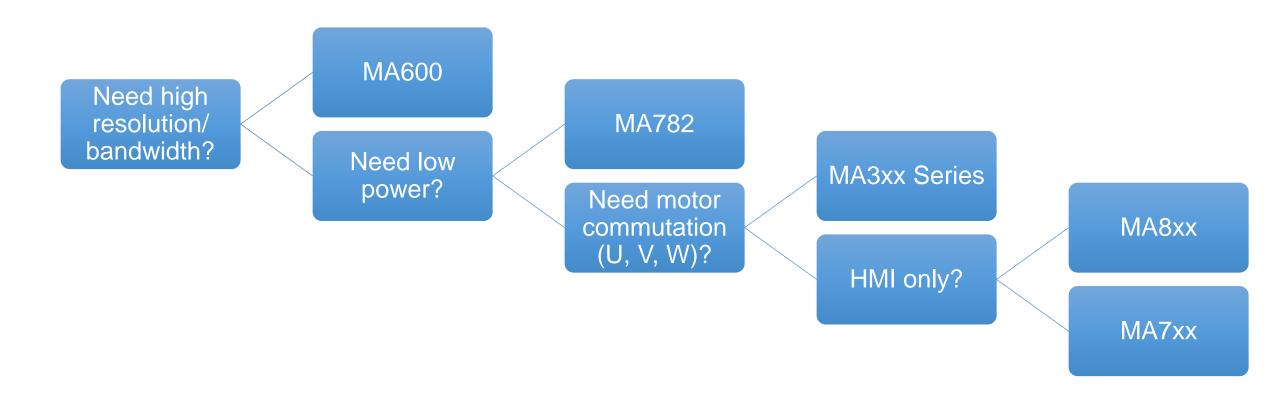
Digi-Key Price: \$21



Comparison to Magnetic Position Sensors

	Optical	Magnetic
Resolution (bits)	25+	15 to 16
Accuracy (max INL)	N/A	0.6 / <0.1
Size (mm)	30x30 to 100x100	3x3/ 2x2
Cost	\$6 to \$100+	\$1 to 2 (sensor + magnet)
Flexibility	None	Yes
Output	Incremental or Absolute	Absolute Angle +

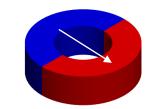

Operation Principles

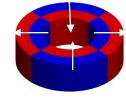


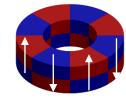
Typical Motor Applications

Sensor Decision Tree

Magnets


Materials/Geometries


Magnet Design Tradeoffs

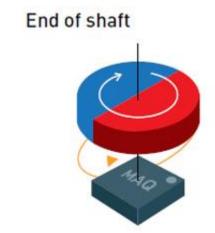

Single Dipole (Diametral)

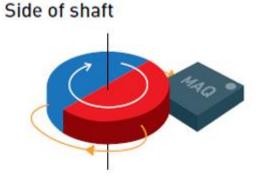
- Easy to Simulate
- True Absolute Position
- Inexpensive
- Only Option for On-Axis (Off-Axis Is Possible)
- Multipole (Radial or Axial)
 - Double the Pole Pairs, Gain 1 Bit!

- Side-Shaft (Off-Axis) Only
- Airgap Must Be Tight for High PP Counts
- Check Supplier Magnetization
- Cannot Achieve True Absolute Output

Magnet Materials

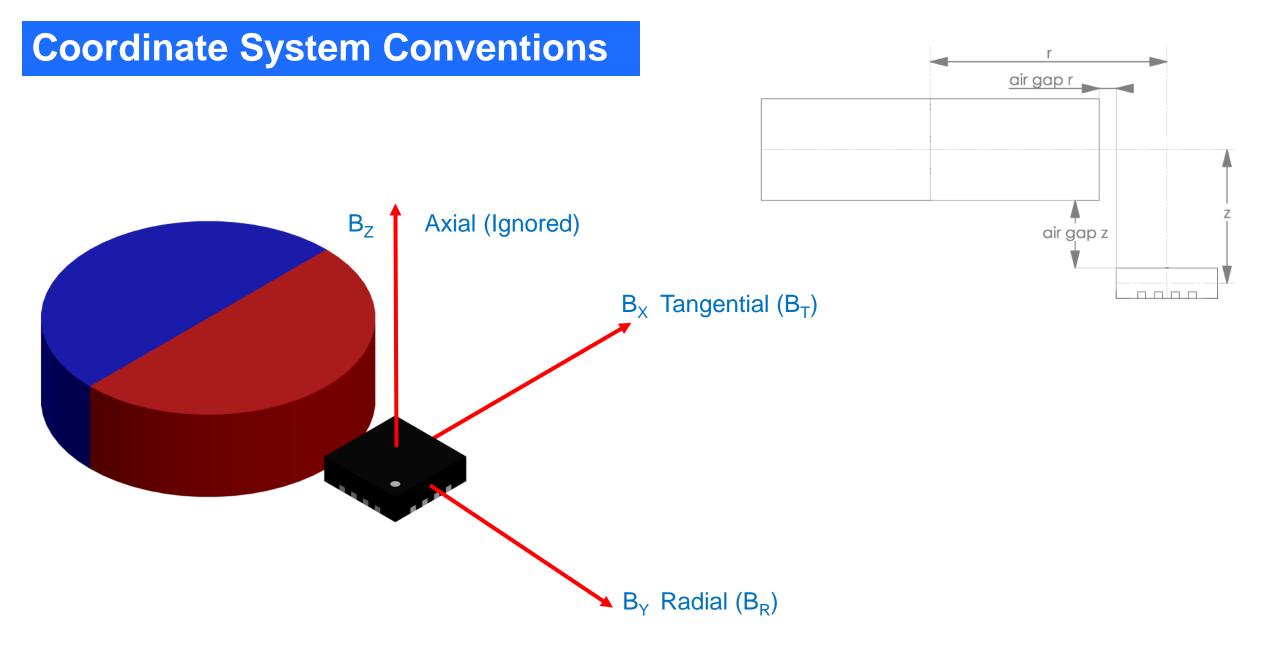
	Br (mT)	Working Temp (°C)	Comments
Neodymium Sintered Bonded	1200 to 1400 470 to 620	80 to 150 130	 Very high resistance to demagnetization Susceptible to corrosion; needs coating Most common target magnet
SmCo Sintered Bonded	820 to 1050 400 to 700	250 to 300 400 to 700	High resistance to demagnetizationMedium/high temperature resistance
AlNiCo Sintered Cast	650 to 1050 600 to 1350	810* 450 to 550	 Low resistance to demagnetization High production cost Rarely used for target magnet
Ferrite Ceramic Molded	200 to 450 140 to 290	450* 50	 Molded ferrite can be flexible, easy to cut Very inexpensive May need a relatively large magnet due to low Br

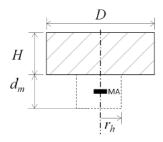

Mechanical Considerations


Attachment to Shaft:

- Epoxy
- Press Fit
- Magnet Coupling
- Magnetic Assembly

PCB/Sensor Placement:

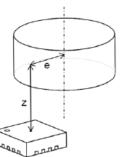

- On-Axis/End of Shaft
- Off-Axis/Side-Shaft
- Off-Axis Orthogonal

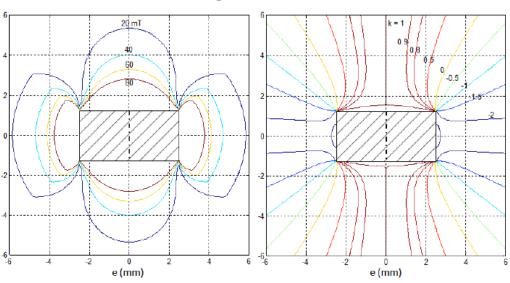

Tools

Simulation/Lab Set-Up

Application Notes

Appendix A: Sensor Position for a Cylinder without a Hole


Use Table 1a and Table 1b to determine the height and radius of the cylinder.


Table 1a: Specifications to Determine the Height of the Cylinder

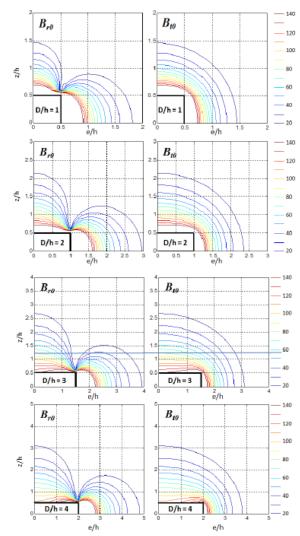

d _m (mm)		D (mm)							
		3	4	5	6	7	8	9	10
	2.0	2.1	2.6	3.1	3.5	3.8	4.1	4.3	4.6
(mm)	2.5	2.2	2.8	3.3	3.7	4.1	4.5	4.8	5.1
	3.0	2.3	2.9	3.5	4.0	4.4	4.8	5.2	5.5
E	3.5	2.4	3.0	3.6	4.1	4.6	5.0	5.5	5.9
Ī	4.0	2.4	3.1	3.7	4.3	4.8	5.3	5.7	6.1
	4.5	2.5	3.2	3.8	4.4	4.9	5.4	5.9	6.4
	5.0	2.5	3.2	3.9	4.5	5.1	5.6	6.1	6.6

Table 1b: Specifications to Determine the Radius of the Cylinder

<i>r_h</i> (mm)		<i>D</i> (mm)							
		3	4	5	6	7	8	9	10
	2.0	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.6
	2.5	0.2	0.2	0.3	0.4	0.4	0.5	0.5	0.6
Ē	3.0	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6
(mm)	3.5	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6
I	4.0	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6
	4.5	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6
	5.0	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6

MPS Online Simulation

End-Of-Shaft

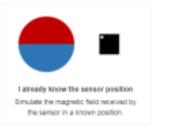
Cylinder Magnet

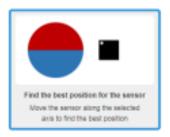
Half Cylinder Magnet

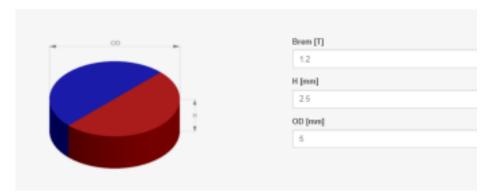
Easiest Solution

No BCT compensation required

Side-Shaft Side-Shaft Orthogonal

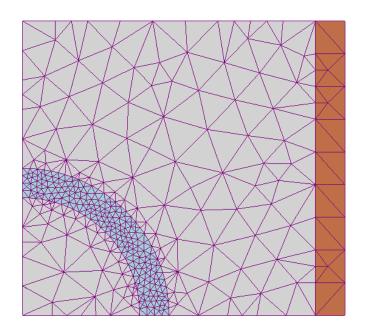

Magnet Supported
Cylinder Magnet
Ring Magnet
Hall Cylinder Magnet
Hall Cylinder

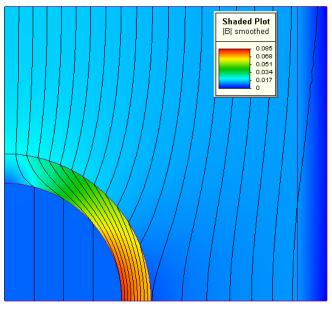

Simulates for all magnet and sensor topologies


Finds optimum mechanical positioning for a particular magnet material and dimension

Includes tolerance analysis effect on angle error

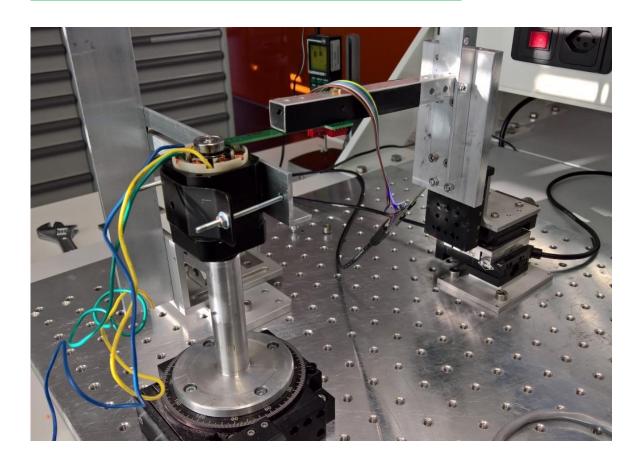
http://sensors.monolithicpower.com/





Finite Element

- Used for Simulation when...
 - There is a high-permeability material nearby
 - The target magnet has no symmetry
- Why I Rarely Recommend FEM
 - Software is complex and expensive
 - Results are highly dependent on optimized mesh, proper boundary conditions, and problem definition
 - In the end, we need to verify with real measurements anyway



Real Measurements

3D Magnetic Field Scanning Set-Up

"The Universe is the best physics simulator."

- One of my college professors

SPACE & PHYSICS

Do We Live in a Simulation? Chances Are about 50–50

Gauging whether or not we dwell inside someone else's computer may come down to advanced AI research—or measurements at the frontiers of cosmology

By Anil Ananthaswamy on October 13, 2020

Sample Simulation

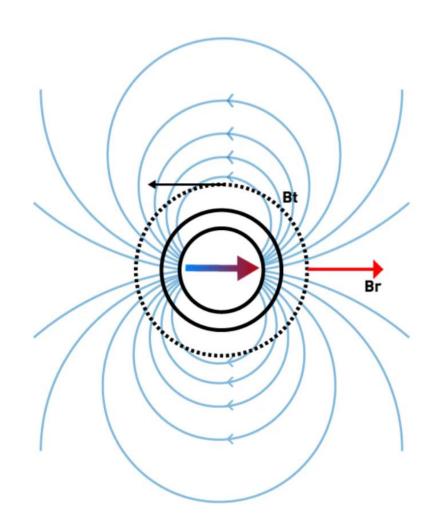
- ID = 4mm
- OD = 10mm
- H = 3mm

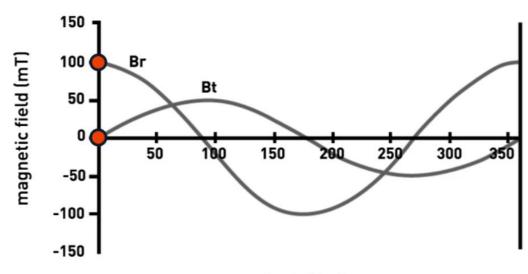
Sensor Placement

- $D_{AXIAL} = -3mm$
- $D_{RADIAL} = +5mm$

Magnet Material

- Sintered Neodymium




Off-Axis Sensing

Side-Shaft Position

Off-axis Compensation

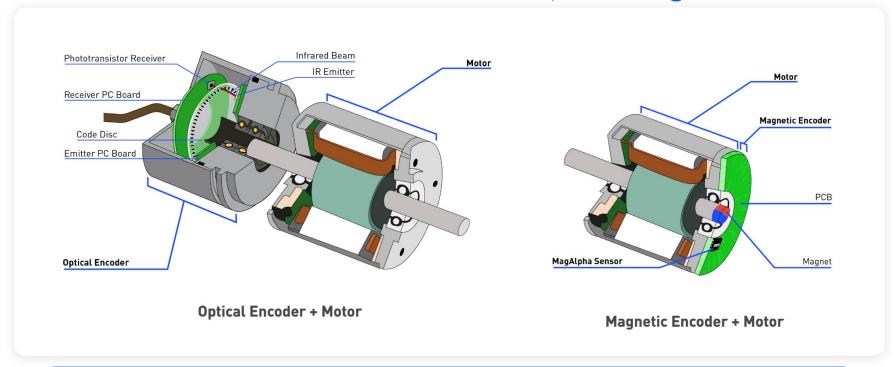
Angle (deg)

$$k = \frac{\max B_r}{\max B_t} \qquad BCT = 258 \left(1 - \frac{1}{k} \right)$$

Choosing a Magnetic Sensor

Part Number	Description		Output Format	Resolution (bits)
	Hi TMP Nowest highest resolution	Resolution, Digital Magnetic Angle	ABZ, PWM, Reduced Wire Mode,	
MACCO	St Hall – Programmable resolution /		SPI, SSI, UVW	15
MA702	bandwidth. Superset of all MA7xx	cremental & PWM Outputs	ABZ, PWM, SPI, SSI	14
	9,	ı ABZ and PWM Outputs in an		
MA735	Ultra-Small UTQFN-14 Package		ABZ, PWM	9 to 13
MA736	8-Bit to 12.5-Bit, 3µs Low-Latency, Ultra-Small, Co	ntactless Digital Angle Sensor	SPI	8 to 12.5
	9-Bit to 14-Bit, MagAlpha Automotive Angle Sensor	r with ABZ Incremental and PWM		
MAQ473	Outputs		ABZ, PWM, SPI, SSL	14
IVIA/34	Hall Law power weke on change	le Sensor	SPI	8 to 12.5
MA780	Hall – Low power, wake-on-change	rated Wake-Up Angle Detection	SPI	12
MA702	Ultra-Small, Low-Power Angle Sensor with Integrat	ed Wake-Up Angle Detection	SPI	12
MAQ470	12-Bit, Automotive Angle Sensor with ABZ Increme	ntal & PWM Outputs	ABZ, PWM, SPI, SSI	12
MAQ430	12-Bit, Automotive Angle Sensor with ABZ & UVW	Incremental Outputs	ABZ, SPI, UVW	12
MA800	8-Bit, Digital, Contactless Angle Sensor with Push	Button Function	SPI, SSI	8
MA820	8-Bit Contactless Angle Encoder with ABZ Output a	and Push Button Function	ABZ, SPI	8
MA704	10-Bit, Digital, Contactless Angle Sensor with ABZ	Incremental & PWM Outputs	ABZ, PWM, SPI, SSI	10
MA730	14-Bit, Digital, Contactless Angle Sensor with ABZ	Incremental & PWM Outputs	ABZ, PWM, SPI, SSI	14
MA710	12-Bit, Digital, Contactless Angle Sensor with ABZ	Incremental & PWM Outputs	ABZ, PWM, SPI, SSI	12
MA702	12-Bit, Digital, Contactless Angle Sensor with ABZ	Incremental & PWM Outputs	ABZ, PWM, SPI, SSI	12
MA310	12-Bit, Digital, Contactless Angle Sensor with ABZ	& UVW Incremental Outputs	ABZ, SPI, UVW	12
MA302	12-Bit, Digital, Contactless Angle Sensor with ABZ	& UVW Incremental Outputs	ABZ, SPI, UVW	12
MA102	Mc	ne Pair Emulation	SPI, UVW	8
UCBAIVI	8-E Hall – Programmable resolution /	and Push Button Function	PWM, SPI	8
MA330	14 bandwidth. Like MA732 but can	UVW Incremental Outputs	ABZ, SPI, UVW	14
	block commutate BLDC			

Sensor Selection Starting Point


Part Number	Description	Output Format	Resolution (bits)
<u>MA600</u>	TMR – New, high resolution/bandwidth	ABZ, PWM, Reduced Wire Mode, SPI, SSI, UVW	15
<u>MA732</u>	Hall – Programmable resolution/bandwidth	ABZ, PWM, SPI, SSI	14
<u>MA780</u>	Hall – Low power; consider for anything operating from battery	SPI	12
<u>MA330</u>	Hall – Identical to MA732 except the UVW outputs for BLDC commutation	ABZ, SPI, UVW	14
<u>MA800</u>	Hall – Very low cost, slow; ideal for HMI	SPI or ABZ or PWM	8

Reduce Cost with Magnetic Encoders

Optical Encoder

Magnetic Encoder

Customer Benefits:

Reduce Cost

Reduce Size

Operates in Harsh Environments without Costly Enclosures

Thank You ted.smith@monolithicpower.com

