Mythbusting EMC Techniques in Power Converter Design

November 2021

Table of Contents

- 1. Introduction
- 2. Study Methodology
- 3. Symmetrical Input Capacitors
- 4. Splitting Ground Planes
- 5. Having Copper under the Inductor
- 6. Shielded Inductors
- 7. Extra Measurements with the Input Filter
- 8. Conclusions
- 9. Q&A

In many seminars, we are presented with a suite of techniques to improve the electromagnetic compatibility (EMC) of our designs.

However, these techniques often don't come with accurate A-to-B comparisons to evaluate if they are true, or quantify the impact of a particular implementation.

EMC is a very design-specific topic. There are general physics laws that always apply, but things that are good for a particular design may not be optimal for a different one.

This presentation shows our efforts at trying to "mythbust" some of the most common EMC tips given in seminars.

Methodology

In order to accurately study the effect of each individual design technique, we have designed a set of PCBs that share a similar layout but each feature a specific change.

Standard Reference PCB

Methodology

All PCBs share the same schematics, but in some cases the components were populated in different footprints.

Standard Reference Schematics

Methodology

The input harness follows CISPR25 standards. The output resistor is connected to the PCB with short cables.

Symmetric Input Capacitors: What Is the Myth about?

When placing the input capacitors symmetrically, creating two opposing current loops, the magnetic fields created by the dl/dt cancel each other out, as they have opposite directions.

Symmetric Input Capacitors: How Was It Tested?

Symmetric C_{IN}

TB6

Symmetric C_{IN} without HF Capacitor

TB6'

Asymmetric C_{IN} without HF Capacitor

Asymmetric C_{IN} with HF Capacitor

TB3

Symmetric Input Capacitors: Test Results

In the FM band, symmetric C_{IN} and having a 100nF capacitor are always better.

No difference at low frequencies

Symmetric Input Capacitors: Test Results

CISPR25 Class 5: RE Log Average Measurements (Vertical)

In 1 and 3, the symmetric C_{IN} is ~8dB better. In 2, the symmetric C_{IN} is ~8dB worse. In 4, it is ~3dB worse.

The 100nF capacitor is always better.

8

Symmetric Input Capacitors: Mythbusting

- The symmetrical input capacitors help improve EMI in the critical FM band for conducted emissions testing.
- In radiated emissions testing, they improve emissions in most bands, while in others they degrade the performance. This is probably due to the decrease of the parasitic L, which moves the resonance at higher frequencies.
- The 100nF capacitors are helpful at almost all frequencies.
- The more problematic bands for the symmetrical capacitors can be improved by other methods, such as using a ferrite bead or following topics.

Ground Plane Splitting: What Is the Myth about?

Return currents in the GND plane are mostly concentrated next to their source conductor, but some of them are spread across a wider surface of the plane. These larger current loops form a magnetic antenna and will radiate. By cutting the GND portion of the hot loop from the rest of the board's GND, these current loops are forced to be smaller, thus lowering emissions.

The current density is low, but not 0

Ground Plane Splitting: How Was It Tested?

Ground Plane Splitting: Test Results

50 MHz

55 MHz

Frequency [Hz]

TB13: Removing All Cuts

30 MHz

No Difference!

40 MHz

45 MHz

35 MHz

Lower frequency also looks the same, but that was expected.

90 MHz

60 MHz 65 MHz 70 MHz 75 MHz 80 MHz

110 MHz

GND Cut

Ground Plane Splitting: Test Results

13

Cutting the GND plane in several locations makes things worse. The best case is when making a local cut to PGND.

The difference between cutting PGND or not is minimal in most bands.

Ground Plane Splitting: Mythbusting

- Splitting the GND plane in the power converter circuit does not have a significant impact on EMI (<1dBµV/m).
- Cutting the GND plane in multiple areas degrades the GND impedance, making the board worse.
- Cutting PGND close to the IC increases the thermal R_{J-A}.

Copper under the Inductor: What Is the Myth about?

The magnetic fields emitted by the inductor create eddy currents when they hit perpendicular to a conductor. These eddy currents create losses in the form of heat, and reduce the effective inductance. However, they also generate magnetic fields that oppose the inductor's magnetic field. By placing copper under the inductor, most of the magnetic field is captured and converted to eddy currents, lowering the total emissions.

Copper under the Inductor: How Was It Tested?

TB6

Π

Copper under the Inductor: Test Results

The board with top copper under the inductor is better in the fundamental and following harmonics.

17

Copper under the Inductor: Test Results

The board with top copper under the inductor is worse in most high-frequency bands.

18

Copper under the Inductor: Analysis

The copper area under the inductor in the top layer is V_{OUT} . The eddy currents are induced there. The parasitic capacitance between SW and V_{OUT} is increased by this additional area.

Copper under the Inductor: Mythbusting

The test results in CE show a reduction in the emitted noise when there is copper directly under the inductor.

The test results in RE show an increase in the emitted noise when copper there is directly under the inductor. This may be caused by the copper being V_{OUT} instead of GND.

Shielded Inductors: What Is the Myth about?

Shielded inductors are regarded as always having better EMC performance compared to non-shielded and semi-shielded inductors.

Shielded (Molded)

Semi-Shielded (Epoxy Coating)

Shielded Inductors: How Was It Tested?

Changed the standard molded inductor used in all other tests (the MPL-AY4020-1R0) to a semi-shielded inductor (the MPL-SE4030-1R0).

APPLICATIONS

- Battery-powered devices
- Embedded computing
- High-current SMPS
- High-frequency SMPS
- POL converters
- FPGA

APPLICATIONS

- Battery-powered devices
- High-efficiency SMPS
- Embedded computing
- Input filters

FEATURES

- Size 4.1mmx4.1mmx1.9mm
- Low DCR
- Low AC Losses
- Low Audible Noise
- Molded Construction
- Soft Saturation
- Stable Over High Temperatures
- Max Operating Temp +155°C
- RoHS/REACH-Compliant. Halogen-Free

ELECTRICAL CHARACTERISTICS

Parameter			Value	Unit
Inductance (1)	L	±20%	1.0	μH
Resistance	RDC	typ	10.1	mΩ
Resistance MAX	RDC MAX	max	11.8	mΩ
Rated Current (2)	I R	typ	7.9	Α
Saturation Current 25°C (3)	SAT 25°C	typ	8.6	Α
Saturation Current 100°C (4)	ISAT 100°C	typ	8.6	Α
Resonance Frequency	fr	typ	56	MHz
		С	$c_{\rm P} = 3$	8pF

FEATURES

- Size 4mmx4mmx3mm .
- Semi-Shielded Construction •
- Low DCR ٠
- Low Stray Field Max Operating Temp +125°C
- RoHS/REACH-Compliant.
- Halogen-Free

ELECTRICAL CHARACTERISTICS						
Parameter			Value	Unit		
Inductance (1)	L	±20%	1.0	μH		
Resistance	RDC	typ	12.5	mΩ		
Resistance MAX	R DC MAX	max	15	mΩ		
Rated Current (2)	I R	typ	6.3	Α		
Saturation Current 25°C (3)	SAT 25°C	typ	7.5	Α		
Saturation Current 100°C (4)	ISAT 100°C	typ	7.2	Α		
Resonance Frequency	fr	typ	90	MHz		

 $C_{P} = 3pF$

Shielded Inductors: Test Results

CISPR25 Class 5: CE Average Measurements

The semi-shielded inductor is much better at low frequencies, and helps at the FM band.

Shielded Inductors: Test Results

The semi-shielded inductor emits less E-field.

24

Shielded Inductors: Test Results

Overall, the semi-shielded looks better except for the resonance at 320MHz.

TB15: Semi-Shielded Inductor

Shielded Inductors: Analysis

Shielded (Molded)

 $C_P = 8pF$

Semi-Shielded (Epoxy Coating)

Shielded Inductors: Mythbusting

From previous experience, it is true that in some cases shielded inductors improve EMC results.

In this particular test, the shielded inductor exhibits worse EMI than the semishielded inductor, due to the construction of the inductor.

Each design is unique, which is why it is important to test in the early stages to evaluate which components are best. Not all inductors are built equal.

Lower Radiation

Credit. Christian Kueck

Extra Measurement: Changing the Filter from Inductor to Ferrite

CISPR25 Class 5: CE Average Measurements

The ferrite bead provides less attenuation at the fundamental frequency, but is similar in the FM band.

28

Extra Measurement: Changing the Filter from Inductor to Ferrite

The ferrite bead provides improves radiated EMI across all bands.

29

Conclusions

- Many EMC recommendations given in seminars are not valid across all designs. There are several variables at play (e.g. PCB size, load type, harnesses, etc.).
- The best way to ensure that a design is going in the right direction is through testing in the early stages of development.
- Start the design following typical EMC best practices, such as symmetrical input capacitance, adding a 100nF capacitor, choosing a good inductor, etc.
- Test the initial design and see what its shortcomings are, then come up with a plan to fix the issues in the identified frequencies.
- Execute the improvement plan, then repeat the testing to confirm that the new system is on the right track.

Let us know your questions

