MPS Battery Management

BMS System Webinar Key Considerations when Designing Battery Management

June 2023

Webinar will begin at 10:00 AM CEST | 1:00 AM PDT | 4:00 AM EDT

Presenters Introduction

Albert Rodriguez

- Senior Battery Applications Engineer at MPS since 2019
- MS and PhD in battery controls at UCCS
- Deeply involved in:
 - Battery modeling, simulation, and identification
 - Fuel gauge algorithm development

Miguel Angel Sanchez

- MPS Battery Applications Engineer since 2020
- Deeply involved in:
 - Creating reference designs and complete BMS solutions
 - New BMS products definition and architectures
- Technical Point of Contact in Europe and US for
 - **BMS** Products

BMS Design Key Considerations

BMS Target Applications

Key BMS Components

Battery Monitor & Protector

Battery Monitor & Protector Key Features

Synchronous Readings

Soft Start Capability

BMS Microcontroller

Considerations for Fuel Gauging

Fuel Gauge Methods

Coulomb Counting (CC) Method

- Inputs: current
- Assumption: total capacity of battery never changes under any condition

CC + OCV Method

- Inputs: current, voltage, OCV characterization
- Assumption: Total capacity changes can be corrected by measuring OCV and comparing to lookup table

MPS Hybrid Method

- Inputs: synchronous current + voltage, temperature, cell model
- Assumption: Accurate state of charge is dependent on many factors that require complete cell model

Fuel Gauge MPS Hybrid Method

Component Considerations

BM & Fuel Gauge Influence on SOC Accuracy

Coulomb Counting CC + OCV corrections MPS Hybrid Method 12 Peak SOC Error (%) 10 8 6 4 2 0 -15 20 -20 -10 -5 0 5 10 15

Battery Monitor Voltage Error (mV)

SOC drift over time due to

current inaccuracy

NMC Chemistry Example

LFP Chemistry Example

10 Cvcles 20mA Current Offset

The fuel gauge method is really the key to achieve good results.

Coulomb Counting Method CC + OCV Method Inaccurate SOC corrections Poor initial SOC due to voltage inaccuracy

due to voltage inaccuracy (and voltage relaxation)

SOC drift in between OCV corrections due to current inaccuracy

MPS Hybrid Method

Optimally corrects SOC (deals with voltage and current inaccuracies)

Provides more battery insights!

Conditions:

- New Battery
- 50% Initial SOC
- 25⁰C
 - **15min Relaxations**

Summary

MPS Offers BMS Complete Solution

Standard BMS board 50A Continuous Current

Stacked MP279x 70A Continuous Current for 17-cell to 32-cell applications

Complete Solution 100A Continuous, 180A Peak Current

Q&A

