Session 1 Starts: 8 AM PDT | 11 AM EDT | 5 PM CEST Session 2 Starts: 11 AM PDT | 2 PM EDT | 8 PM CEST

Ensuring Safety for Autonomous Vehicles with Advanced Voltage Supervision

Charlotte (Xiaodan) Wang, Technical Marketing Engineer, MPS

June 2024

Charlotte (Xiaodan) Wang

- From Tangshan City, Hebei Province, China
- Ph.D. degree from the Ohio State University, 2022
- Joined MPS in 2021 as an intern
- Currently a Technical Marketing Engineer (Product Definer) for the Automotive product line
- Focus on advanced driver-assistance system (ADAS) products including voltage monitors, power sequencers, and system-on-chip (SoC) power management ICs (PMICs)

Agenda

Background

Autonomous Driving (AD) Statistics

Autonomous Driving (AD): Enabled by Advanced Driver-Assistance Systems (ADAS)

Autonomous Driving (AD): High-Performance Computer Block Diagram

Traditional vs. Advanced Voltage Supervision

Voltage Supervision Overview

Limitations of Traditional Voltage Supervisors

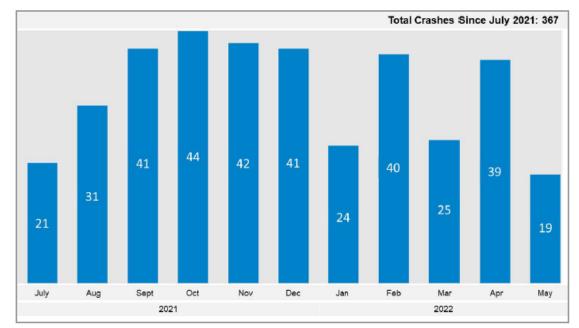
Advanced Voltage Supervision

Advanced Voltage Supervision Design

Functional Safety Capability

Voltage Monitoring (Drift)

Voltage Monitoring (Noise)

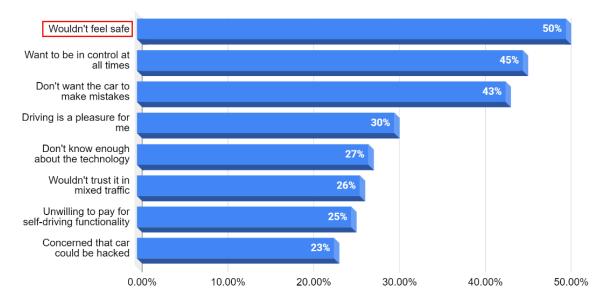

Voltage Threshold Setting

Sequence Recording

Test Results

Summary

Autonomous Driving (AD) Statistics



Level 2 ADAS Crashes by Month

Source: National Highway Traffic Safety Administration (NHTSA), "Summary Report: Standing General Order on Crash Reporting for Level 2 Advanced Driver Assistance Systems." June 2022.

Consumer Concerns About Self-Driving Cars

% of respondents naming the following reasons for their reluctance to use self-driving cars

Source: BCG and World Economic Forum Base: 1,260 consumers from 10 countries

The safety of autonomous driving systems is mission critical

AD: Enabled by Advanced Driver-Assistance Systems (ADAS)

Long-Range Radar and LiDAR

Adaptive cruise control

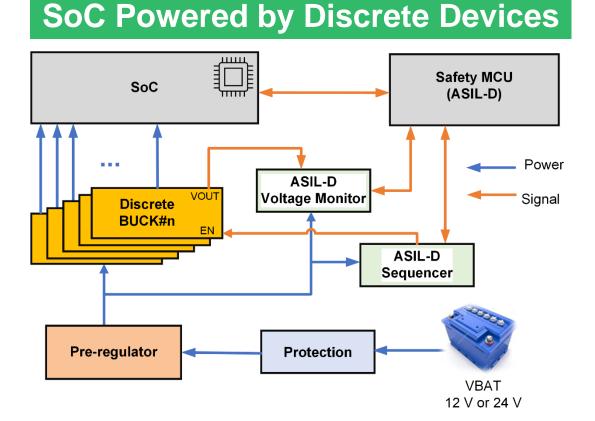
Ultrasound

Parking assistance

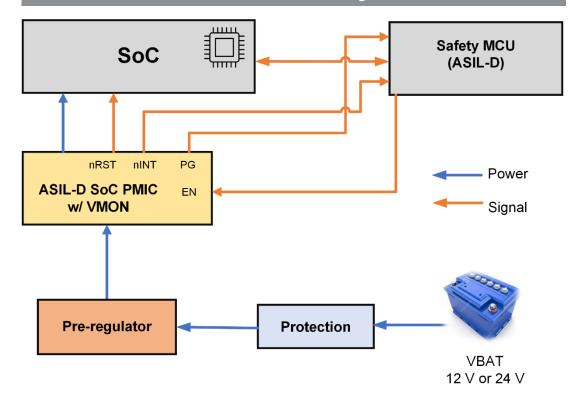
Short-/Medium-Range Radar

- Emergency braking
- Pedestrian detection
- Cross-traffic alert
- Collision warning/avoidance
- Blind spot detection

High-Performance Computers

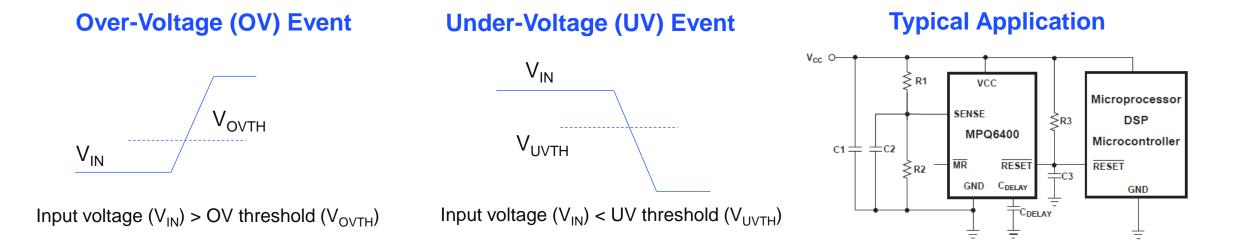

- Sensor fusion
- Al learning
- Computation tasks required for perception, cruising, and parking

Cameras


- Traffic sign recognition
- Lane departure warning
- Parking assistance
- Surround view

Supervision is mandatory to ensure the functionality of each ADAS subsystem

AD: High-Performance Computer Block Diagram


SoC Powered by PMIC

Voltage Supervision Overview

- Voltage supervision plays a key role in meeting stringent functional safety requirements
- Supply voltages out of tolerance can cause the SoC/processor in the system to malfunction, resulting in system failure
- Voltage supervisors/monitors are responsible for over-voltage/under-voltage (OV/UV) event supervision for a voltage rail
- In addition to supervising the system voltage, voltage monitors should report diagnostic information in systems requiring functional safety

Limitations of Traditional Voltage Supervisors

Lacking Functional Safety Capability

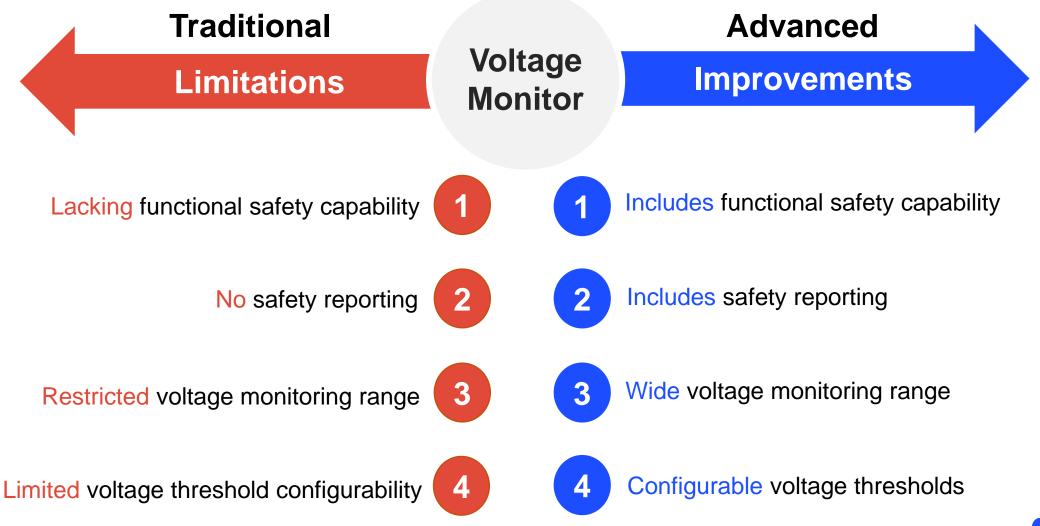
No on-chip diagnostics to implement functional safety features. Lacks compliance with automotive safety integrity level (ASIL).

No Safety Reporting

Traditional supervisors have an analog reset pin to indicate a fault condition. ASIL-compliant systems require fault conditions to be stored to the memory (e.g. time of event, voltage level, type of fault) and read back by a safety MCU.

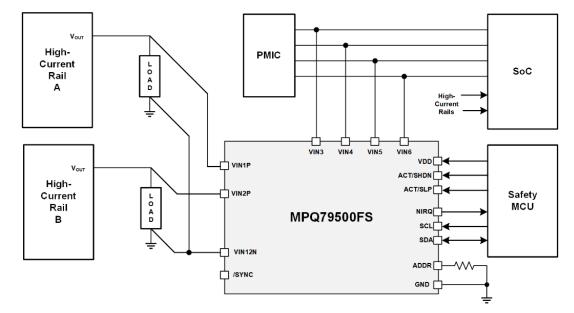
Limitations

Restricted Voltage Monitoring Range


The voltage monitoring range is restricted to the preset choices. There is no flexibility for user configuration.

Restricted Voltage Threshold Configurability

The threshold values are preset and fixed to limited options. The over-/under-voltage thresholds are not configurable.


Advanced Voltage Supervision

Advanced Voltage Supervision Design

- Includes Functional Safety Capability:
 - Built-In Self-Testing (BIST)
 - Interrupt Output Pin (Fault Reporting)
 - I²C Interface with Cyclic Redundancy Check (CRC)
 - ASIL-D Compliant, ISO26262 Certified
- Multiple Monitoring Channels: 6 (2 Differential Remote Sensing)
- Wide Monitoring Range and Configurable Absolute OV and UV Thresholds:
 - 1x Scaling: 0.2V to 1.475V Range, 5mV/Step
 - 4x Scaling: 0.8V to 5.5V Range, 20mV/Step
- AEC-Q100 Qualified
- Sequence Recording (SYNC Pin for Sequence Recording by Synchronizing Multiple Devices)

6-Channel Voltage Monitor (MPQ79500FS) in a Typical Application Circuit

1

Built-In Self Testing (BIST)

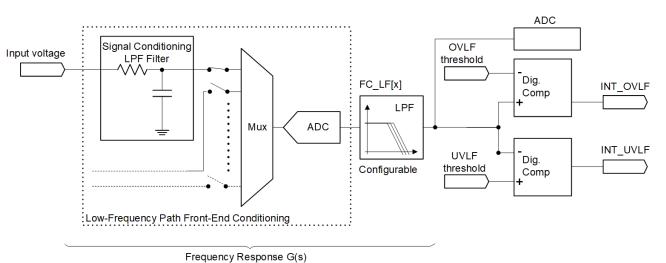
Logic BIST (LBIST), analog BIST (ABIST), and volatile memory (VM) BIST diagnostics from the non-volatile memory (NVM) ensure reliability for every drive cycle.

NIRQ Fault Reporting Pin

An interrupt NIRQ pin is used for fault reporting to the higher-level safety microcontroller (MCU) for fault handling.

Reference Voltage Monitor

Use a redundant independent voltage reference to cross-check the reference voltage. If one voltage reference is out of range, the device should report reference voltage failures to the system and the system needs to take necessary actions.



System Clock Monitor

Use independent clock sources to provide cross-check. If one clock is out of range, the device should report clock failures to system and the system needs to take necessary actions.

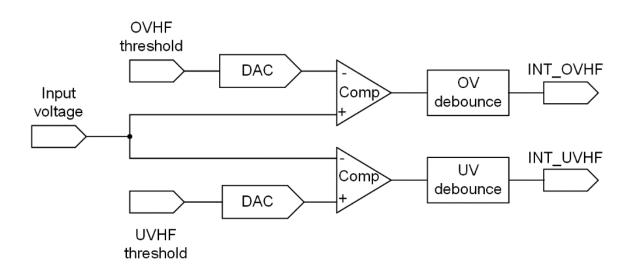
Voltage Monitoring (Drift)

The monitored rails where voltages drift (low frequency, LF) are converted to digital signals by a high-accuracy **analog-to-digital converter (ADC)**. Over-voltage/under-voltage low-frequency (UVLF/OVLF) fault events are reported.

Over-Voltage/Under-Voltage Low-Frequency (UVLF/OVLF) Monitoring Structure

Enable/Disable UVLF/OVLF Monitoring via the I²C

O IEN UVLF(0x14)Bank1			⊙ IEN OVLF(0x16)Bank1			
UVLF_VIN[1]	Enable	•	OVLF_VIN[1]	Enable	•	
UVLF_VIN[2]	Enable	•	OVLF_VIN[2]	Disable	•	
UVLF_VIN[3]	Enable	•	OVLF_VIN[3]	Enable	•	
UVLF_VIN[4]	Enable	•	OVLF_VIN[4]	Disable	•	
UVLF_VIN[5]	Disable	•	OVLF_VIN[5]	Disable	•	
UVLF_VIN[6]	Disable	•	OVLF_VIN[6]	Enable	•	


Monitoring Range, Threshold, and Cutoff Frequency Configuration via the I²C

VRANGE MULT(0x1F)Bank1			Monitor Registers-CH1(0x20-0x25)Bank1			
VRANGE_MULT_VIN[1]	1x scaling	•	UV_HF[1]	0.2 V		
VRANGE_MULT_VIN[2]	4x scaling	•	OV_HF[1]	1.475 V		
VRANGE_MULT_VIN[3]	4x scaling	•	UV_LF[1]	0.2 V		
VRANGE_MULT_VIN[4]	1x scaling	•	OV_LF[1]	1.475 V		
VRANGE_MULT_VIN[5]	1x scaling	•	FLT_HF_UV[1]	0.1 μs		
VRANGE_MULT_VIN[6]	1x scaling	•	FLT_HF_OV[1]	0.1 μs		
			FC_LF_THREEDB[1]	500 Hz		

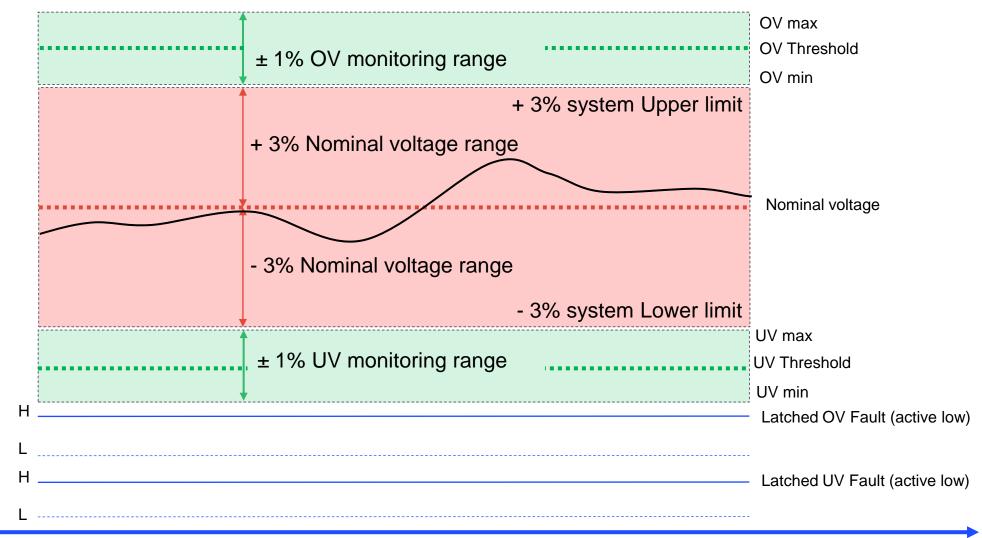
Voltage Monitoring (Noise)

High-accuracy comparators monitor voltage noise (high frequency, HF) for over-voltage and under-voltage events, and include a debounce time that is configurable down to 100ns. Over-voltage/under-voltage high-frequency (UVHF/OVHF) fault events are reported.

Over-Voltage/Under-Voltage High-Frequency (UVHF/OVHF) Monitoring Structure

Enable/Disable UVHF/OVHF Monitoring via the I²C

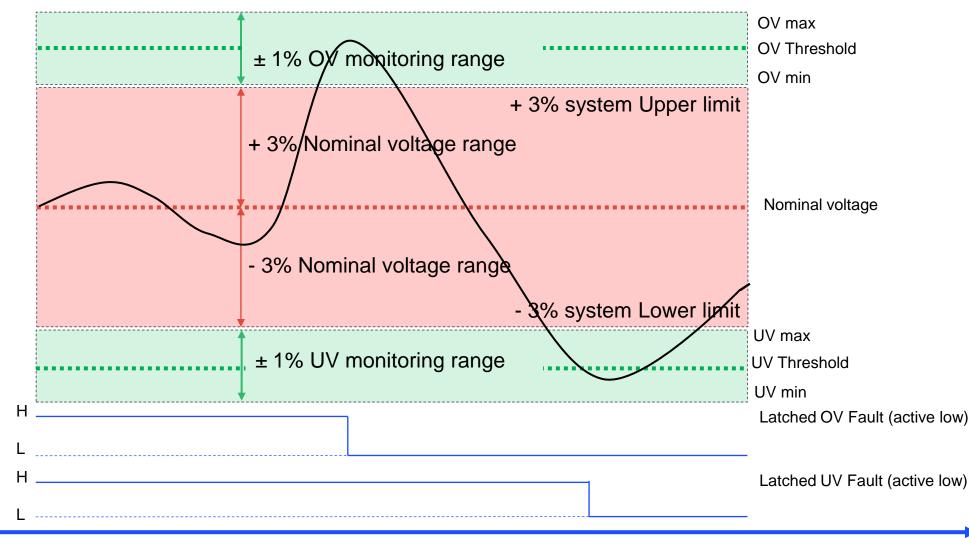
IEN UVHF(0x13)Bank1		○ IEN OVHF(0x15)Bank1			
UVHF_VIN[1]	Enable 🔻	OVHF_VIN[1]	Enable 🔻		
UVHF_VIN[2]	Enable 🔻	OVHF_VIN[2]	Enable 🔻		
UVHF_VIN[3]	Enable 🔻	OVHF_VIN[3]	Enable 🔻		
UVHF_VIN[4]	Enable 🔹	OVHF_VIN[4]	Enable 🔻		
UVHF_VIN[5]	Disable 🔹	OVHF_VIN[5]	Enable 🔻		
UVHF_VIN[6]	Disable 🔹	OVHF_VIN[6]	Disable 🔻		


Monitoring Range, Threshold, and Debounce Time Configuration via the I²C

VRANGE MULT(0x1F)Bank1			Monitor Registers-CH1(0x20-0x25)Bank1			
VRANGE_MULT_VIN[1]	1x scaling	•	UV_HF[1]	0.2 V	•	
VRANGE_MULT_VIN[2]	4x scaling	•	OV_HF[1]	1.475 V	•	
VRANGE_MULT_VIN[3]	4x scaling	•	UV_LF[1]	0.2 V	•	
VRANGE_MULT_VIN[4]	1x scaling	•	OV_LF[1]	1.475 V	•	
VRANGE_MULT_VIN[5]	1x scaling	•	FLT_HF_UV[1]	0.1 μs	•	
VRANGE_MULT_VIN[6]	1x scaling	•	FLT_HF_OV[1]	0.1 μs	•	
			FC_LF_THREEDB[1]	500 Hz	•	

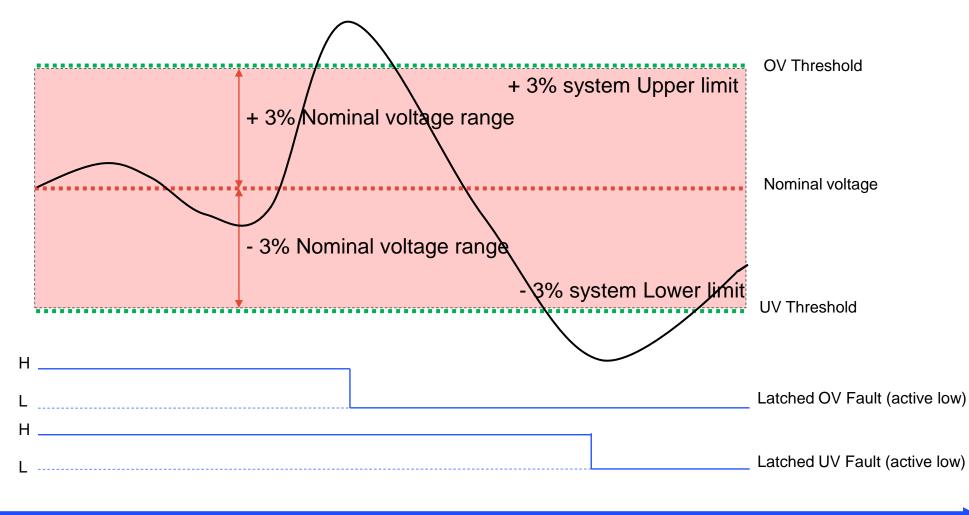
Normal Operation

- OV/UV monitoring range: OV/UV threshold range with tolerance over temperature
- This is applicable for both DC (low frequency) and AC (high frequency) monitoring.

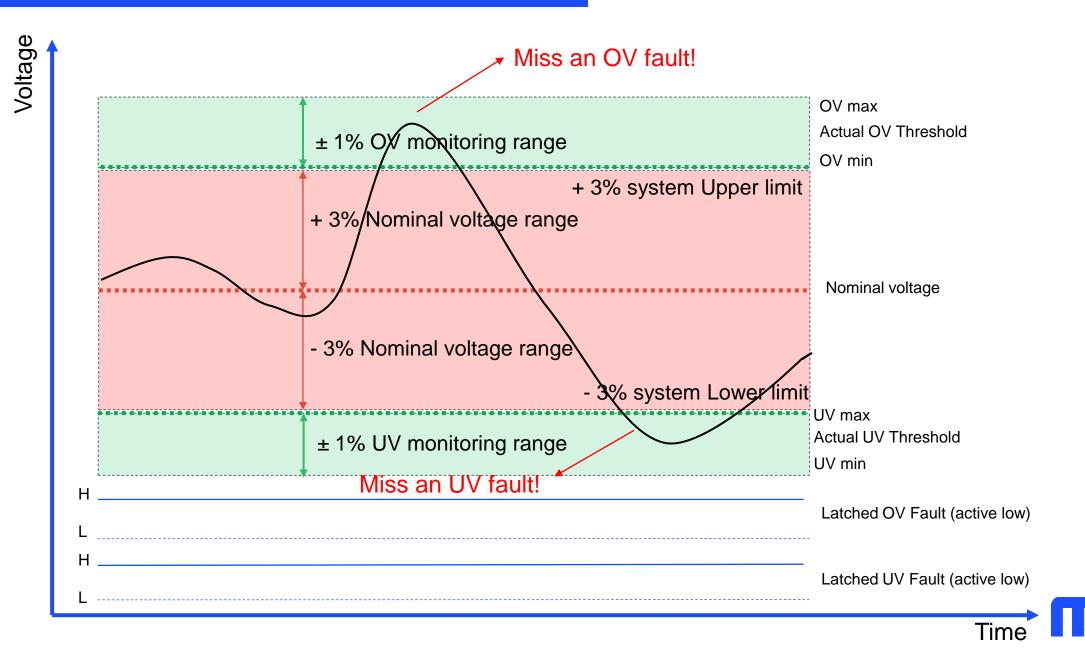


Voltage

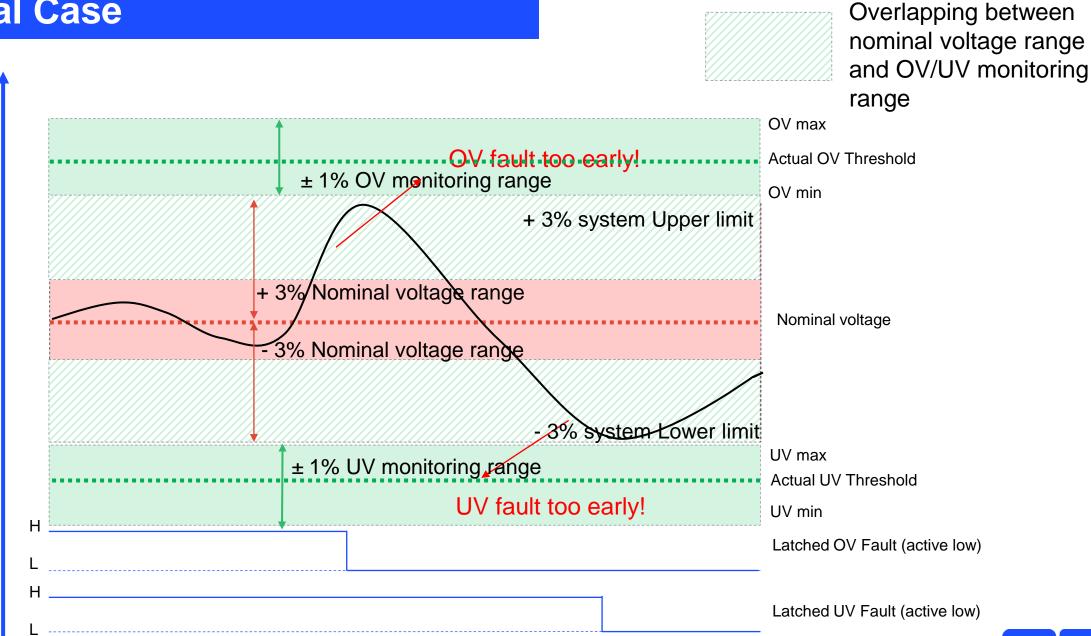
Normal Operation


Voltage

- OV/UV monitoring range: OV/UV threshold range with tolerance over temperature
- This is applicable for both DC (low frequency) and AC (high frequency) monitoring.

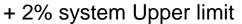

Ideal Case

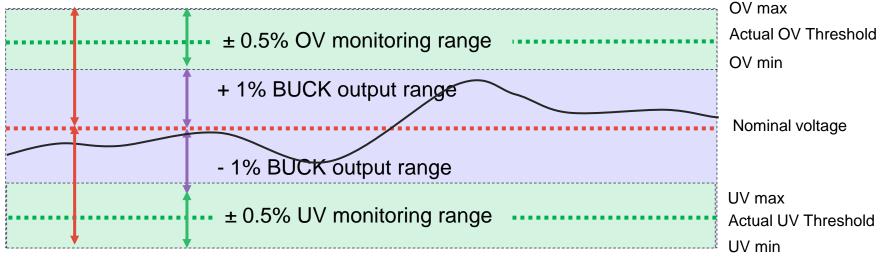
Voltage



Actual Case

Actual Case


Voltage



- MPS

Tim

How to Correctly Setup Thresholds

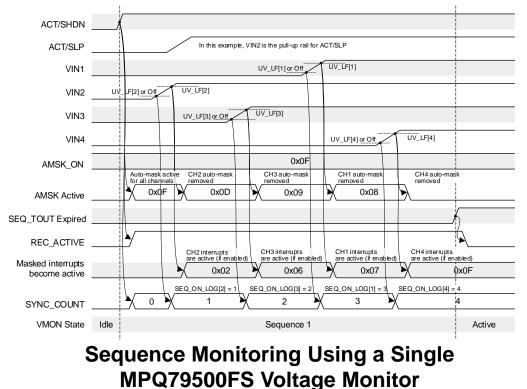
- 2% system Lower limit

Higher accuracy buck regulator and more accurate voltage monitors are required to meet total system tolerance.

How to Correctly Setup Thresholds

+ 3% system Upper limit

OV max Actual OV Threshold ± 1% OV monitoring range OV min + 1% BUCK output range Nominal voltage -1% BUCK output range ± 1% UV monitoring range UV max Actual UV Threshold UV min


- 3% system Lower limit

• System tolerance must be loosened to accommodate tolerances of the Monitor and Buck regulator.

Sequence Recording

The power-on, power-off, sleep entry, and sleep exit sequences can be recorded to monitor a correct and safe sequence. Sequence recording with more than one voltage (>6 rails) can be achieved via the /SYNC pin with all voltage rails sharing a synchronous domain.

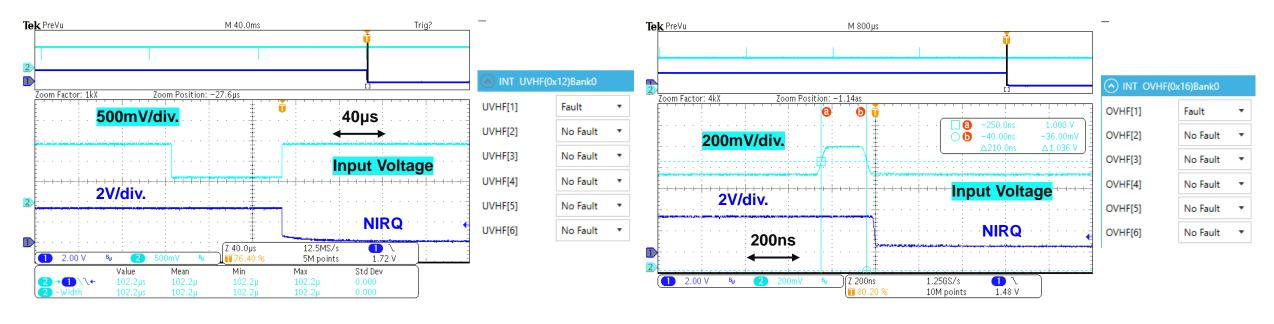
Enable/Disable Sequence Monitoring via the I²C

IEN SEQON(0x17)_Bank1			IEN SEQOFF(0x18)_Bank1			
ON_VIN[1]	Disable	•	OFF_VIN[1]	Disable	•	
ON_VIN[2]	Disable	•	OFF_VIN[2]	Disable	•	
ON_VIN[3]	Disable	•	OFF_VIN[3]	Disable	•	
ON_VIN[4]	Disable	•	OFF_VIN[4]	Disable	•	
ON_VIN[5]	Disable	•	OFF_VIN[5]	Disable	•	
ON_VIN[6]	Disable	•	OFF_VIN[6]	Disable	•	

User-Expected Sequence, Actual Logged Sequence, and Timestamp via the I²C

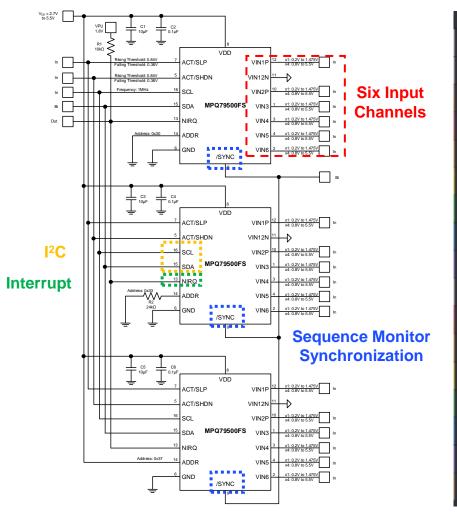
SEQ_ONEXP(0xB0-0xB5)_Bank1		SEQ ONLOG(0x50-0x55)_Bank0		SEQ TIME(0x90	SEQ TIME(0x90-0x9B)Bank0		
ON_EXP[1]	3	•	ON_LOG[1]	03	SEQ_TIME[1]	14.8	ms
ON_EXP[2]	4	•	ON_LOG[2]	04	SEQ_TIME[2]	23.9	ms
ON_EXP[3]	1	•	ON_LOG[3]	01	SEQ_TIME[3]	1.3	ms
ON_EXP[4]	2	•	ON_LOG[4]	02	SEQ_TIME[4]	6.1	ms
ON_EXP[5]	3	•	ON_LOG[5]	03	SEQ_TIME[5]	13.95	ms
ON_EXP[6]	2	-	ON_LOG[6]	02	SEQ_TIME[6]	5.7	ms

Test Results: Voltage Monitoring (Drift) for OV/UV



- OVLF threshold = 1V (where the voltage increases from 0V to 5V)
- The fault pin (NIRQ) is pulled low, and the OVLF fault register is set (OVLF, bit[1]) after an OVLF fault occurs
- The fault bit cannot be written to 1 to be cleared until the fault condition is removed

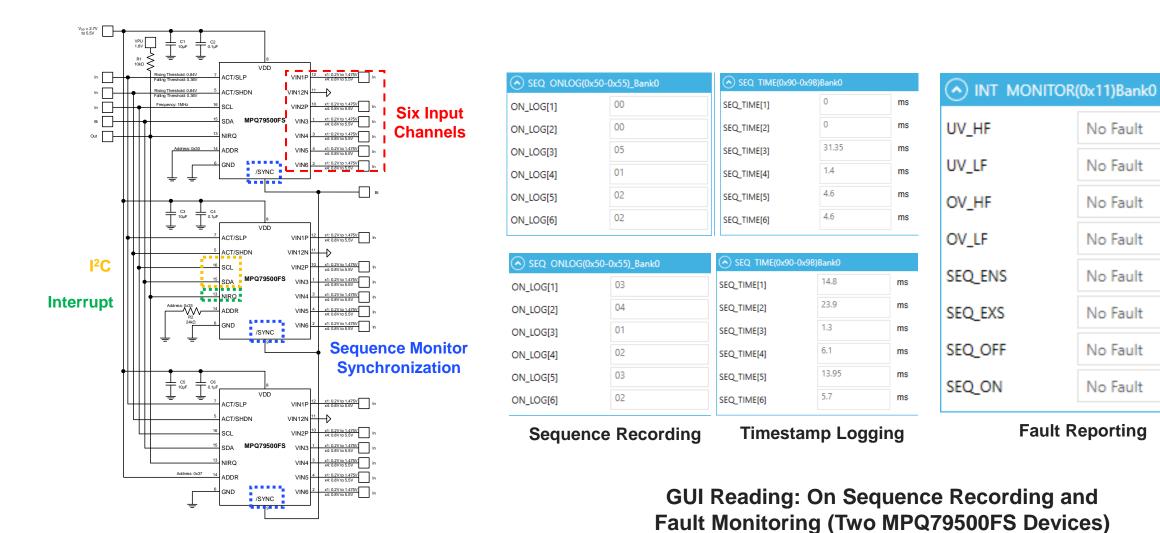
- UVLF threshold = 1V (where the voltage falls from 5V to 0V)
- The NIRQ fault pin is pulled low, and the UVLF fault register is set (UVLF, bit[1]) after a UVLF fault occurs
- The fault bit cannot be written to 1 to be cleared until the fault condition is removed


Test Results: Voltage Monitoring (Noise) for OV/UV

- UVHF threshold = 1V (where the input voltage falls from 1.4V to 0.6V for a short pulse)
- The NIRQ fault pin is pulled low, and the UVHF fault register is set (UVHF, bit[1]) after a UVHF fault occurs
- The fault bit cannot be written to 1 to be cleared until the fault condition is removed

- OVHF threshold = 1V (where the input voltage increases from 0.7V to 1.2V for a short pulse)
- The NIRQ fault pin is pulled low, and the OVHF fault register is set (OVHF, bit[1]) after a OVHF fault occurs
- The fault bit cannot be written to 1 to be cleared until the fault condition is removed

Test Results: Sequence Recording (Multiple Devices)


Sequence Monitoring of Three Synchronized MPQ79500FS Devices

Power-Up Sequence Recording Using Two MPQ79500FS Voltage Monitors (SYNC Pin to Synchronize Both Devices to the Same Domain)

Test Results: Sequence Recording (Multiple Devices)

Sequence Monitoring of Three Synchronized MPQ79500FS Devices

MPS

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Summary

- As ADAS technology achieves higher levels of vehicle autonomy, functional safety is mandatory
- Voltage supervision plays a critical role in achieving functional safety
- Advanced voltage supervision can target stringent voltage rail monitoring requirements in autonomous vehicle platforms with the following features:
 - Functional safety capability: On-chip diagnostics (e.g. LBIST, ABIST, CRC, ECC) to avoid malfunctions
 - Multiple channels monitored: Using a single chip to monitor up to 6 channels helps reduce overall cost and size
 - **Reporting** of safety faults (stored in the memory) via the I²C
 - Wide voltage monitoring range: Flexibility to monitor a wide voltage range with high-resolution steps
 - Configurable voltage thresholds: Flexibility to configure the OV/UV threshold on demand.
 - Sequence recording: Sequence monitoring via one or multiple voltage monitors can be achieved to supervise a safe power-on/-off sequence.
- Voltage monitor has tolerance. There are trade-offs (either early OV/UV faults or miss some OV/UV faults) when setting up thresholds for system voltage monitoring.

Thank You!

Questions?

