Start Time: November 30, 2023 | 5:00 PM CET | 8:00 AM PST | 11:00 AM EST

Choosing the Right Inductor for Your DC/DC Converter

Monolithic Power Systems

November 30, 2023

Speaker

Product Manager, Passive Components
Monolithic Power Systems, Germany
Sven.Spohr@monolithicpower.com
www.monolithicpower.com

Agenda

- 1. Magnetics Basics
- 2. DC/DC Converter
- 3. Buck Converter Topology
- 4. Inductance, Ripple Current, Efficiency
- 5. Saturation Current
- 6. Rated Current
- 7. Efficiency Comparison
- 8. Q&A

What Is an Inductor?

What is the main task of the inductor?

Inductors oppose changes in current from a circuit

$$V = L \times \frac{di}{dt}$$

Inductors always have a voltage across them if there is change of current

I = constant
$$V = 0$$

Wire is wound in a coil shape with or without a core.

 If current is increasing, inductors try to keep the current from increasing.

$$I \rightarrow \begin{array}{c} & & \\ &$$

 If the current is decreasing, inductors try to keep the current from decreasing.

$$I \rightarrow \underbrace{+ \ V -}_{Current}$$
Magnetic Field

What Is an Inductor?

- Inductors can store induced electric energy as magnetic energy.
- With the change of current in time, the induced magnetic energy changes, causing electromotive force.

$$e = -\frac{d\phi}{dt} = -L \frac{di}{dt}$$

e = Electromotive force (EMF)

 $\frac{d\phi}{dt}$ = Change of magnetic flux over the change in time

 $\frac{di}{dt}$ = Change of current over the change in time

L = Inductance, measured in Henries (H)

Inductance

$$L = \frac{\mu_0 \times \mu_r \times A}{I} \times N^2$$

- L = Inductance (in H)
- μ_0 = Constant of Nature (4 π x 10⁻⁷)
- μ_r = Relative Permeability
- A_M = Area of the Coil
- I_M = Length of the Coil
- N = Number of Turns

$$L = \frac{\mu_0 \times \mu_r \times A}{I} \times N^2 \rightarrow L = A_L \times N^2$$
Parameters Related to Core Material

DC/DC Converter

- Buck Converter:

 $\circ V_{IN} > V_{OUT}$

- I_{IN} <

I_{OUT}

- Boost Converter:

- $\circ V_{IN} < V_{OUT}$
- I_{IN} >
- I_{OUT}

DC/DC Buck Converter

Switch On

Switch Off

DC/DC Buck Converter – Current Definitions

I_{OUT} Output current
 The average inductor current

$$I_{OUT} = I_{AVG} = I_{L} = I_{DC} \approx I_{L RMS}$$

I_{L MAX} Maximum current of the inductor
 The required saturation current

$$I_{L \text{ MAX}} = I_{L \text{ PEAK}} = ISAT = I_{OUT} + \frac{r \times I_{OUT}}{2}$$

• ΔI_L Inductor ripple current Current ripple ratio ~ 20% to 40%

$$\Delta IL = r x I_{OUT}$$

DC/DC Buck Converter – Inductance

EVL2328-TL-00A: Synchronous Buck Converter Evaluation Board

Converter Parameters:

- Input voltage (V_{IN}) = 24V
- Output voltage $(V_{OUT}) = 5V$
- Output current (I_{OUT}) = 2A
- Switching frequency (f_{SW}) = 430kHz
- Ripple current factor (r) = 40%

$$DC = \frac{V_{OUT}}{V_{IN}} = \frac{t_{ON}}{T} = 0.208$$

$$L = \frac{V_{IN} - V_{OUT}}{f_{sw} \times \Delta I_L \times I_{OUT}} \times DC = 11.5 \mu H$$

$$I_{OUT} = 2 A$$

$$I_{L \text{ MAX}} = I_{OUT} + \frac{\Delta I_{L}}{2} = 2.4 \text{ A}$$

Standard Inductance Value: 8.2µH / 10µH / 12µH / 15µH

- Test different inductor values
- Inductance tolerances

DC/DC Buck Converter – Ripple Current

EVL2328-TL-00A: Synchronous Buck Converter Evaluation Board

Input voltage $(V_{IN}) = 24V$ Output voltage $(V_{OUT}) = 5V$ Output current $(I_{OUT}) = 2A$ Switching frequency $(f_{SW}) = 430kHz$

Higher Inductance = Smaller Ripple Current Lower Inductance = Higher Ripple Current

 $6.8\mu H$ Peak-to-Peak = 1.62A

 $8.2\mu H$ Peak-to-Peak = 1.26A

10µH Peak-to-Peak = 1.18A

 $15\mu H$ Peak-to-Peak = 0.89A

DC/DC Buck Converter – Ripple Current

A higher ripple current increases AC losses.

DC/DC Buck Converter – Efficiency

Saturation Current

Type / Characteristics

Ferrite Drum Core Inductors

- High Permeability
- Hard Saturation
- Temperature-Dependent

Molded Inductors

- Low Permeability
- Soft Saturation
- Stable Across Temperatures

Saturation Current

$$I_{OUT} = 2 A$$

$$I_{L MAX} = I_{OUT} + \frac{\Delta I_{L}}{2} = 2.4 A$$

- Safe range of use.
- Inductance value changes.
- Molded-type inductors provide flexibility and wider operating ranges.
- Ferrite drum core inductors are stable until the drop-knee point; beyond this point, functionality is reduced.

Rated Current

Do not exceed the maximum operating temperature.

Self-heating of the component caused by the wire's DC resistance (R_{DC}).

The temperature rise is not standard, and it varies between manufacturers.

Consider the maximum operating temperature conditions and the ambient temperature.

Start of Winding

The converter switch node is close to the start of winding side

- · Avoids audible noise from harmonics.
- Reduces emissions caused by the inductor.

Inductor Selection Considerations

Inductor

- Calculate the required inductance (L)
- Calculate the maximum current flowing in the inductor
 - o l_{out}
 - \circ I_{LMAX}
- Select an inductor close to the calculated inductance, and ensure that the current can be at least as large as the maximum calculated current
- Application's frequency
- EMI
- Start of winding

Currents

- Saturation current
 - Soft or hard saturation
 - Peak current
 - Maximum ripple current
 - Lower inductance = higher ripple current
 - Higher inductance = lower ripple current
- Rated current
 - Application's ambient temperature
 - Operating temperature limits
 - Low R_{DC} for less DC losses (higher I_{DC})

MPL-AT Series

MPL-AT (Tiny Molded Inductors)

- Start of Winding Indication
- Low-Profile Inductors
- Low DCR
- High Saturation Current
- Soft Saturation
- Stable Across Temperatures
- Max Operating Temperature: 125 ° C
- Sizes: 2010 / 2512

MPL-AY Series

MPL-AY (Molded Inductors)

- Start of Winding Indication
- Low DCR
- High Saturation Current
- Soft Saturation
- Stable Across Temperatures
- Max Operating Temperature: 125°C/155°C
- Sizes: 3020 / 4020 / 1050 / 1265

MPL-AL Series

MPL-AL (Low-Resistance Molded Inductors)

- Start of Winding Indication
- Flat Wire Construction
- Lowest DCR
- High Performance
- High Saturation Current
- Soft Saturation
- Stable Across Temperatures
- Max Operating Temperature: 155°C
- Sizes: 4020 / 5030 / 5050 / 6050 / 6060

Flat Wire, Low DCR, High Efficiency

MPL-SE Series

MPL-SE (Semi-Shielded Inductors)

- External Epoxy Resin for Better Magnetic Characteristics
- Magnetically Shielded
- Low DCR
- High Current
- Max Operating Temperature: 125°C
- Sizes: 2512 / 4030 / 5040 / 6040

MPS Inductors - Efficiency

Part Number	L	R _{DC}	I _{DC}	I _{SAT}
MPL-AL6060-100	10μH	24mΩ	6.9A	6.6A

Q&A

Contact

PowerMagnetics@monolithicpower.com

Power Inductors Page and Inductor Selector Tool

https://www.monolithicpower.com/en/products/inductor.html

MPS Flyer – Power Inductors Brochure

https://www.monolithicpower.com/en/support/product-literature.html

Last Webinar "Understanding Power Inductor Parameters"

Webinar On-Demand Understanding Power Inductor Parameters

